Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 143: 109213, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949380

RESUMO

Largemouth bass ranavirus (LMBV) is a highly destructive pathogen that causes significant mortality rates among largemouth bass populations. Unfortunately, there is a dearth of drug development efforts specifically aimed at treating LMBV. To address this, our study sought to investigate the potential effectiveness of incorporating varying doses of VD3 into the diet as a treatment for LMBV. Through qRT-PCR and semi-qPCR, we observed significant suppression and clearance of LMBV pathogens in largemouth bass fed with 15000 IU/Kg and 20000 IU/Kg of VD3 within 14 days. In addition, VD3 treatment significantly increased the expression levels of key immune-related genes such as IL-1ß, IFN-γ, Mx, and IgM. Encouragingly, we observed that VD3 significantly increased antioxidant and immune activities such as TSOD, TAOC and C3 in serum and maintained total protein levels. Additionally, tissue pathology sections highlighted a dose-dependent relationship between VD3 supplementation and tissue damage, with the 15000 IU and 20000 IU groups exhibiting minimal damage. In conclusion, a reasonable concentration of VD3 effectively reduced LMBV replication and tissue damages, while improved immune-related genes expression and serum biochemical indices. These findings declare the considerable therapeutic potential of VD3 supplementation for combating LMBV disease and provide an alternative treatment option for fish farming.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Colecalciferol/farmacologia , Infecções por Vírus de DNA/veterinária
2.
Viruses ; 14(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35746698

RESUMO

(1) Background: Singapore grouper iridovirus (SGIV) can cause extensive fish deaths. Therefore, developing treatments to combat virulent SGIV is of great economic importance to address this challenge to the grouper aquaculture industry. Green tea is an important medicinal and edible plant throughout the world. In this study, we evaluated the use of green tea components against SGIV infection. (2) Methods: The safe working concentrations of green tea components were identified by cell viability detection and light microscopy. Additionally, the antiviral activity of each green tea component against SGIV infection was determined with light microscopy, an aptamer (Q5c)-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentrations of green tea components were green tea aqueous extract (GTAE) ≤ 100 µg/mL, green tea polyphenols (TP) ≤ 10 µg/mL, epigallocatechin-3-gallate (EGCG) ≤ 12 µg/mL, (-)-epigallocatechin (EGC) ≤ 10 µg/mL, (-)-epicatechin gallate (EGC) ≤ 5 µg/mL, and (-)-epicatechin (EC) ≤ 50 µg/mL. The relative antiviral activities of the green tea components determined in terms of MCP gene expression were TP > EGCG > GTAE > ECG > EGC > EC, with inhibition rates of 99.34%, 98.31%, 98.23%, 88.62%, 73.80%, and 44.31%, respectively. The antiviral effect of aptamer-Q5c was consistent with the results of qPCR. Also, TP had an excellent antiviral effect in vitro, wherein the mortality of fish in only the SGIV-injection group and TP + SGIV-injection group were 100% and 11.67%, respectively. (4) Conclusions: In conclusion, our results suggest that green tea components have effective antiviral properties against SGIV and may be candidate agents for the effective treatment and control of SGIV infections in grouper aquaculture.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Vírus de DNA/veterinária , Iridovirus/genética , Ranavirus/fisiologia , Chá
3.
Viruses ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746713

RESUMO

Singapore grouper iridovirus (SGIV) causes high economic losses in mariculture. Effective drugs for managing SGIV infection are urgently required. Medicinal plant resources are rich in China. Medicinal plants have a long history and significant curative effects in the treatment of many diseases. Reverse-transcription quantitative real-time PCR is the most commonly used method for detecting virus infection and assessing antiviral efficacy with high accuracy. However, their applications are limited due to high reagent costs and complex time-consuming operations. Aptamers have been applied in some biosensors to achieve the accurate detection of pathogens or diseases through signal amplification. This study aimed to establish an aptamer-based high-throughput screening (AHTS) model for the efficient selection and evaluation of medicinal plants components against SGIV infection. Q2-AHTS is an expeditious, rapid method for selecting medicinal plant drugs against SGIV, which was characterized as being dram, high-speed, sensitive, and accurate. AHTS strategy reduced work intensity and experimental costs and shortened the whole screening cycle for effective ingredients. AHTS should be suitable for the rapid selection of effective components against other viruses, thus further promoting the development of high-throughput screening technology.


Assuntos
Aptâmeros de Nucleotídeos , Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Ensaios de Triagem em Larga Escala
4.
Fish Shellfish Immunol ; 124: 372-379, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430348

RESUMO

Grouper iridovirus is a devastating pathogen that belongs to the genus Ranavirus. Based on the previous results that natural ingredient quercetin isolated from Illicium verum Hook. f. could effectively inhibit Singapore grouper iridovirus (SGIV) replication, suggesting that quercetin could serve as potential antiviral agent against grouper iridovirus. To know about whether quercetin has indirect antiviral activity against SGIV, this study made the investigation in vitro and in vivo, and the potential mechanism was also explored. Pretreating the cells with quercetin (12.5 µg/mL) significantly inhibited the replication of SGIV, similar results were also confirmed in vivo. Importantly, quercetin pretreatment could induce the expression of genes involved in type I interferon (IFN) system (IFN, STAT1, PKR, MxI and ISG15) and TLR9. It suggested that quercetin exerted the indirect antiviral activity against SGIV infection through promoting the recognition of SGIV and activating the IFN pathway to establish the antiviral status of host cell. Taken together, our results shedded light on the indirect antiviral function of natural ingredient quercetin, and clearly demonstrated that natural ingredient quercetin will be an excellent potential agent against SGIV infection in grouper aquaculture.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Plantas Medicinais , Ranavirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Bass/genética , Infecções por Vírus de DNA/veterinária , Quercetina/farmacologia
6.
J Fish Dis ; 43(5): 531-540, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32100315

RESUMO

Grouper iridovirus causes high mortality rates in cultured groupers, and effective treatment for grouper iridovirus infection is urgently required. Illicium verum Hook. f. is a well-known medicinal plant with a variety of biological activities. The aim of this study was to analyse the use of I. verum extracts to treat grouper iridovirus infection. The safe working concentration of each I. verum extract was identified both in vitro and in vivo as follows: I. verum aqueous extract (IVAE) ≤ 500 µg/ml; I. verum ethanol extract (IVEE) ≤ 250 µg/ml; shikimic acid (SKA) ≤ 250 µg/ml; trans-anethole (TAT) ≤ 800 µg/ml; 3,4-dihydroxybenzoic acid (DDBA) ≤ 400 µg/ml; and quercetin (QCE) ≤ 50 µg/ml. The inhibitory activity of each I. verum extract against grouper iridovirus infection was analysed using aptamer (Q2)-based fluorescent molecular probe (Q2-AFMP) and RT-qPCR. All of the I. verum extracts displayed dose-dependent antiviral activities against grouper iridovirus. Based on the achieved per cent inhibition, IVAE, IVEE, DDBA and QCE were associated with the greatest antiviral activity (all > 90%). Together, our results indicate that I. verum extracts have effective antiviral properties, making it an excellent potential source material for the development of effective treatment for grouper iridovirus infection.


Assuntos
Antivirais/farmacologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/tratamento farmacológico , Illicium/química , Extratos Vegetais/farmacologia , Ranavirus/efeitos dos fármacos , Animais , Antivirais/química , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Relação Dose-Resposta a Droga , Doenças dos Peixes/virologia , Extratos Vegetais/química
7.
Environ Toxicol Chem ; 38(12): 2750-2763, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31546287

RESUMO

Amphibians are declining worldwide, in part because of large-scale degradation of habitat from agriculture and pervasive pathogens. Yet a common North American amphibian, the wood frog (Lithobates sylvaticus), ranges widely and persists in agricultural landscapes. Conventional survey techniques rely on visual encounters and dip-netting efforts, but detectability limits the ability to test for the effects of environmental variables on amphibian habitat suitability. We used environmental DNA to determine the presence of wood frogs and an amphibian pathogen (ranavirus) in Prairie Pothole wetlands and investigated the effects of 32 water quality, wetland habitat, and landscape-level variables on frog presence at sites representing different degrees of agricultural intensity. Several wetland variables influenced wood frog presence, the most influential being those associated with wetland productivity (i.e., nutrients), vegetation buffer width, and proportion of the surrounding landscape that is comprised of other water bodies. Wood frog presence was positively associated with higher dissolved phosphorus (>0.4 mg/L), moderate dissolved nitrogen (0.1-0.2 mg/L), lower chlorophyll a (≤15 µg/L), wider vegetation buffers (≥10 m), and more water on the landscape (≥0.25). These results highlight the effects of environmental factors at multiple scales on the presence of amphibians in this highly modified landscape-namely the importance of maintaining wetland water quality, vegetation buffers, and surrounding habitat heterogeneity. Environ Toxicol Chem 2019;38:2750-2763. © 2019 SETAC.


Assuntos
Anuros/fisiologia , DNA Ambiental/análise , Áreas Alagadas , Agricultura , Animais , Anuros/virologia , Clorofila A/análise , Fósforo/análise , Ranavirus/fisiologia , Qualidade da Água
8.
Fish Shellfish Immunol ; 54: 188-96, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27050314

RESUMO

Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines.


Assuntos
Bass , RNA Helicases DEAD-box/genética , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Infecções por Vírus de RNA/veterinária , Sequência de Aminoácidos , Animais , Clonagem Molecular , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Nodaviridae/fisiologia , Filogenia , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ranavirus/fisiologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA