Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photobiomodul Photomed Laser Surg ; 42(4): 275-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536106

RESUMO

Background: Impaired angiogenesis is a significant factor contributing to delayed healing in diabetic foot ulcers (DFUs) due to inadequate oxygenation. Objective: This study aimed to investigate the impact of photobiomodulation (PBM) using a Ga-As laser on the release of serum hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-2, and nitric oxide (NO) in diabetic patients with DFUs. Materials and methods: In this double-blind RCT, a total of 30 patients with grade II DFUs were enrolled. The patients were randomly divided into two groups: the PBM (n = 15) and the placebo (n = 15). In the PBM group, a Ga-As laser (904 nm, 2 J/cm2, 90 W) was given for 3 days/week for 4 weeks (11 sessions). In the placebo group, the power was turned off. Both groups received similar standard wound care. Before and after interventions, the levels of serum HIF-1α, VEGF, NO, and sVEGFR-2 were measured. In addition, the percentage decrease in the wound surface area (%DWSA) was measured. Results: Following the intervention, the results revealed that the PBM group had significantly lower levels of VEGF than the placebo group (p = 0.005). The %DWSA was significantly higher in the PBM group compared to the placebo group (p = 0.003). Moreover, VEGF showed a significant negative correlation with %DWSA (p < 0.001). Conclusions: The observed decrease in serum levels of VEGF and an increase in %DWSA, compared to the placebo group, suggests that PBM effectively improves angiogenesis. Furthermore, the significant correlation found between VEGF levels and %DWSA emphasizes the importance of evaluating wound surface in patients as a dependable indicator of enhanced wound angiogenesis. Clinical Trial Registration: NCT02452086.


Assuntos
Pé Diabético , Subunidade alfa do Fator 1 Induzível por Hipóxia , Terapia com Luz de Baixa Intensidade , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Cicatrização , Humanos , Pé Diabético/radioterapia , Pé Diabético/terapia , Pé Diabético/metabolismo , Masculino , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos da radiação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Idoso , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue
2.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
3.
J Ethnopharmacol ; 326: 117913, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38360380

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated. AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis. MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model. RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor. CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.


Assuntos
Cinamatos , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Peixe-Zebra , Células Endoteliais da Veia Umbilical Humana , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células , Movimento Celular , Transdução de Sinais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias Colorretais/metabolismo , Neoplasias do Colo/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo
4.
J Ethnopharmacol ; 324: 117811, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286156

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Kaempferia galanga has been used to treat high blood pressure, chest pain, headache, toothache, rheumatism, indigestion, cough, inflammation and cancer in Asia. Nevertheless, most of its pharmacological studies were focused on ethanolic extracts and volatile oils. The exact active chemical constituents and their underlying mechanisms are still poorly understood, especially towards its anti-cancer treatment. Inhibition of angiogenesis is an important atrategy to inhibit tumor growth. It has been reported that the low polar component of the plant possessed anti-angiogenic activity. Yet, the potent compound which is responsible for the effect and its molecular mechanism has not been reported. AIM OF THE STUDY: To determine the potent anti-angiogenic component in K.galanga and its mechanism of action. MATERIAL AND METHODS: The low polar components of the plant were concentrated using the methods of supercritical fluid extraction (SFE), subcritical extraction (SCE) and steam distillation (SD). The anti-angiogenic activity of the three extracts was evaluated using a zebrafish model. The content of the active compound in those extracts was determined with HPLC analysis. The in-vitro and in-vivo activity of the isolated compound was evaluated using human umbilical vein endothelial cells (HUVECs) model, the aortic ring assay and the matrigel plug assay, respectively. Its molecular mechanism was further studied by the western blotting assay and computer-docking experiments. Besides, its cytotoxicity on cancer and normal cell lines was evaluated using the cell-counting kit. RESULTS: HPLC results showed that trans-ethyl p-methoxycinnamate (TEM) was the major component of the extracts. The extract of SFE showed the best effect as it has the highest content of TEM. TEM could inhibit vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Mechanistic study showed that it could suppress tyrosine kinase activity of the receptor of VEGF (VEGFR2) and alter its downstream signaling pathways. In addition, the molecular docking showed that the binding of TEM and VEGFR2 is stable, which mainly attributed to the non-covalent binding interaction. Beside, TEM possessed little toxicity to both cancer and normal cells. CONCLUSION: TEM is the major anti-angiogenic component present in K. galanga and its anti-angiogenic property rather than toxicity provides scientific basis for the traditional use of K. galanga in cancer treatment.


Assuntos
Alpinia , Neoplasias , Zingiberaceae , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Peixe-Zebra , Simulação de Acoplamento Molecular , Zingiberaceae/química , Células Endoteliais da Veia Umbilical Humana , Neoplasias/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Proliferação de Células , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Neurobiol ; 60(11): 6227-6247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439957

RESUMO

Stroke is one of the leading causes of disability and death globally with a lack of effective therapeutic strategies. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and it has been shown to be protective against various neurological diseases. The potential roles of catalpol against ischemic stroke are still not completely clear. In this study, we examined the effect and mechanism of catalpol against ischemic stroke using in vivo rat distal middle cerebral artery occlusion (dMCAO) and in vitro oxygen-glucose deprivation (OGD) models. We demonstrated that catalpol indeed attenuated the neurological deficits caused by dMCAO and improved neurological function. Catalpol remarkably promoted angiogenesis, promoted proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ), and prevented neuronal loss and astrocyte activation in the ischemic cortex or hippocampal dentate gyrus (DG) in vivo. The vascular endothelial growth factor receptor 2 (KDR, VEGFR-2) inhibitor SU5416 and VEGF-A shRNA were used to investigate the underlying mechanisms. The results showed that SU5416 administration or VEGF-A-shRNA transfection both attenuated the effects of catalpol. We also found that catalpol promoted the proliferation of cultured brain microvascular endothelial cells (BMECs) and the proliferation and differentiation of NSCs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was also inhibited by SU5416. Moreover, catalpol was shown to protect NSCs against OGD indirectly by promoting BMEC proliferation in the co-cultured system. Taken together, catalpol showed therapeutic potential in cerebral ischemia by promoting angiogenesis and NSC proliferation and differentiation. The protective effects of catalpol were mediated through VEGF-A/KDR pathway activation.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Acidente Vascular Cerebral , Ratos , Animais , AVC Isquêmico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Proliferação de Células , RNA Interferente Pequeno/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
6.
Phytomedicine ; 106: 154400, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049428

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY: This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS: We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS: This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION: In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Apoptose , Autofagia , Caspase 3/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Nefropatias Diabéticas/metabolismo , Glucosídeos , Camundongos , Simulação de Acoplamento Molecular , Monoterpenos , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142578

RESUMO

Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Saponinas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Caspase 3/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Chá , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo
8.
J Ethnopharmacol ; 282: 114580, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34474142

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyao powder (XYP) is a traditional Chinese medicine formula which has wide scope of indications related to liver stagnation, reconcile qi and blood in TCM syndrome. Infertility can induce similar symptoms and signs to the clinical features of liver stagnation syndrome, the treatment of infertility by soothing the liver is obvious. XYP can increase the clinical pregnancy rate, follicle development, oocyte quality and improve endometrial receptivity. However, its underlying pharmacological mechanism of improving endometrial receptivity is unclear. AIM OF THE STUDY: The aim of the study was to investigate the effect of XYP on pregnancy rates and endometrial angiogenesis, to determine the potent mechanism in association with the pro-angiogenic behavior which closely related to improving endometrial receptivity. MATERIALS AND METHODS: We established an animal model exhibiting decreasing endometrial receptivity by controlled ovarian hyperstimulation and a human endometrial microvascular endothelial cell (HEMEC) model. Endometrial morphology was observed by hematoxylin-eosin staining and Scanning electron microscopy. Western blot and qRT-PCR analysis were used to detect expression of PCNA, Cyclin D1, MMP9 and MAPK signaling pathway. Scratch-wound assay and tube formation assay were used to observe HEMEC migration and tubulogenesis. RESULTS: The results demonstrated that XYP pretreatment could improve endometrial receptivity, which leads to high pregnancy rates. In the endometrium, XYP facilitated angiogenesis by promoting tube formation. XYP could enhance HEMEC proliferation and migration induced by VEGF, which were observed by the microscope and Scratch-wound assays. XYP promoted HEMEC proliferation and migration via the p38 and JNK MAPK signaling pathways. CONCLUSION: XYP promotes HEMEC proliferation and migration via the P38 and the JNK MAPK signaling pathways, which contribute to the endometrial angiogenesis mediated by VEGFR-2 that is favorable for endometrial receptivity. We firstly elucidated the molecular mechanisms by which XYP improved endometrial receptivity by promoting angiogenesis.


Assuntos
Indutores da Angiogênese/farmacologia , Medicamentos de Ervas Chinesas , Endométrio , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Infertilidade Feminina/tratamento farmacológico , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Medicina Tradicional Chinesa , Pós , Gravidez , Ratos
9.
J Biomol Struct Dyn ; 40(20): 9636-9647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34074230

RESUMO

The chemical constituents of the nonpolar fractions of the bamboo shoot skin Phyllostachys heterocycla were extensively studied. The phytochemical study was divided into two parts: the first deals with isolation of the chemical constituents using different chromatographic techniques that resulted in isolation of four compounds. The chemical structures of the pure isolated compounds were elucidated using different spectroscopic data. The second part deals with identification of the rest of the constituents using the GC technique. Additionally, both crude extract and the pure isolated compounds were investigated for cytotoxic activity. One of the isolated compounds; namely glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM), and it remarkably stimulated apoptotic breast cancer cell death with 31.6-fold (16.13% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Moreover, the identified compounds especially 1 were found to have high binding affinity towards both TPK and VEGFR-2 through the molecular docking studies which highlight its mode of action. HighlightsChemical profiling of Phyllostachys heterocycla bark nonpolar extract was fully identified.Glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM).Glyceryl 1-monopalmitate significantly stimulated apoptotic breast cancer cell death with 31.6-fold by arresting cell cycle at G2/M and preG1 phases.Molecular docking simulation showed good binding affinities towards TPK and VEGFR-2 proteins.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Extratos Vegetais , Feminino , Humanos , Antineoplásicos/química , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Casca de Planta/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Extratos Vegetais/farmacologia , Poaceae/química
10.
Mol Biol Rep ; 48(11): 7233-7242, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34596810

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer characterized by dysregulation of several crucial cellular signaling pathways such as PI3K/p-Akt/mTOR/NF-κB and VEGF/VEGFR2 pathways. Novel therapies targeting these pathways have been discovered such as regorafenib which is small molecular multi-kinase inhibitor mainly targets VEGF/VEGFR2. Catalpol is an iridoid glycoside richly found in rehmannia glutinosa which is a fundamental herb used extensively in traditional Chinese medicine. It is evidenced that catalpol has many pharmacological effects on nervous and cardiovascular systems, in addition to exhibiting hypoglycemic, anti-inflammatory, anti-proliferative and anti-tumour activities. However, its effect on HCC isn't clear enough. So, this study aimed to investigate the anti-tumour effects of catalpol either alone or in combination with regorafenib on HCC. METHODS AND RESULTS: In vitro experiments were performed using HepG2 and HUH-7 hepatocellular carcinoma cell lines. MTT assays evaluated anti-proliferative effects of catalpol and/or regorafenib. Combination index was calculated via compusyn software to detect synergism. Tumour biomarkers were measured using ELISA technique. Results showed that catalpol has anti-tumour effects against HCC via targeting PI3K/p-Akt/mTOR/NF-κB and VEGF/VEGFR2 pathways. In addition, results revealed that our novel combination of catalpol and regorafenib showed potent synergistic anti-tumour effect via suppressing both of PI3K/p-Akt/mTOR/NF-κB and VEGF/VEGFR2 signaling pathways and their downstreams. CONCLUSION: Catalpol and/or regorafenib markedly suppressed PI3K/p-Akt/mTOR/NF-κB and VEGF/VEGFR2 signaling pathways and consequently showed potent anti-tumour effects against HCC. Results encourage further pre-clinical and clinical studies of this novel combination as a promising targeted therapy for HCC management.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Glucosídeos Iridoides/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia
11.
Phytother Res ; 35(11): 6389-6400, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541711

RESUMO

Anti-angiogenic medicines have been evaluated as anticancer therapies, however, their use remains limited in clinical practice due to associated adverse effects. Asiatic acid (AA) is known to have broad-spectrum anticancer properties, however, its effects on angiogenesis in breast cancer remain to be fully established. In this study, we analyzed the inhibitory effects of AA on angiogenesis using human umbilical vein endothelial cells (HUVECs) cultured in vitro and on the growth and metastasis of a subcutaneous breast cancer 4T1 tumor model and a lung metastasis model in vivo. AA significantly inhibited HUVECs proliferation, migration, and tube formation in vitro. In vivo, AA significantly reduced the microvascular density and blood vascular permeability in breast cancer tumors and inhibited growth and lung metastasis. AA inhibited the expression of vascular endothelial growth factor (VEGF) in HUVECs and subsequently downregulated the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream target proteins including ERK1/2, Src, and FAK. These results indicate that AA significantly inhibits angiogenesis and blood vessel permeability through the VEGF/VEGFR2 signal axis to inhibit the growth and metastasis of breast cancer. Our data strongly demonstrate the potential applications of AA in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Permeabilidade Capilar , Movimento Celular , Proliferação de Células , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Triterpenos Pentacíclicos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Mar Drugs ; 19(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34436310

RESUMO

Ocular angiogenic diseases, characterized by abnormal blood vessel formation in the eye, are the leading cause of blindness. Although Anti-VEGF therapy is the first-line treatment in the market, a substantial number of patients are refractory to it or may develop resistance over time. As uncontrolled proliferation of vascular endothelial cells is one of the characteristic features of pathological neovascularization, we aimed to investigate the role of the class I histone deacetylase (HDAC) inhibitor Largazole, a cyclodepsipeptide from a marine cyanobacterium, in ocular angiogenesis. Our study showed that Largazole strongly inhibits retinal vascular endothelial cell viability, proliferation, and the ability to form tube-like structures. Largazole strongly inhibits the vessel outgrowth from choroidal explants in choroid sprouting assay while it does not affect the quiescent choroidal vasculature. Largazole also inhibits vessel outgrowth from metatarsal bones in metatarsal sprouting assay without affecting pericytes coverage. We further demonstrated a cooperative effect between Largazole and an approved anti-VEGF drug, Alflibercept. Mechanistically, Largazole strongly inhibits the expression of VEGFR2 and leads to an increased expression of cell cycle inhibitor, p21. Taken together, our study provides compelling evidence on the anti-angiogenic role of Largazole that exerts its function through mediating different signaling pathways.


Assuntos
Inibidores da Angiogênese/farmacologia , Cianobactérias , Depsipeptídeos/farmacologia , Oftalmopatias/prevenção & controle , Olho/irrigação sanguínea , Tiazóis/farmacologia , Animais , Organismos Aquáticos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/prevenção & controle , Fitoterapia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361750

RESUMO

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Assuntos
Acacia/química , Antineoplásicos Fitogênicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Células K562 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Triterpenos/química , Triterpenos/isolamento & purificação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205419

RESUMO

Age-related macular degeneration (AMD) is one of the main causes of deterioration in vision in adults aged 55 and older. In spite of therapies, the progression of the disease is often observed without reverse vision quality. In the present study, we explored whether, in undifferentiated ARPE-19 retinal cells, a disruption of the VEGF receptors (VEGF-R)/caveolin-1 (Cav-1)/protein kinases pathway could be a target for counteracting VEGF secretion. We highlight that Resvega®, a combination of omega-3 fatty acids with an antioxidant, resveratrol, inhibits VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation. Moreover, DNA ChIP analysis reveals that this combination prevents the interaction between AP-1 and vegf-a and vegf-r2 gene promoters. By these pathways, Resvega could present a potential interest as nutritional complementation against AMD.


Assuntos
Caveolina 1/metabolismo , Degeneração Macular/prevenção & controle , Retina/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Retina/metabolismo , Fator de Transcrição AP-1/antagonistas & inibidores
15.
Biomed Pharmacother ; 141: 111806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34246190

RESUMO

Diabetic nephropathy (DN) is a common disease, and patients often do not have satisfactory treatments. We investigated therapeutic effects of Fuxin Granules(FX) on DN and potential molecular mechanisms. We orally administered doses of FX to db/db mice for 10 weeks and measured total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol. H&E, PAS, Masson, and Oil Red O staining were used to observe the structure of kidneys and calculate indices of kidney function. We used pharmacological analysis to investigate potential mechanisms of FX. Relative mRNA and protein levels in the TGF-ß1/Smad, TGF-ß1/Smad, and VEGF/VEGFR2 pathways were examined. TC, TG, and LDL-C were markedly reduced, lipid accumulation was low, fibrosis reduced, kidney atrophy improved, kidney lipid droplet number significantly reduced, and glomerular filtration function improved by FX treatment. Multi-channel therapeutic effects in DN through the TGF-ß1/Smad and VEGF/VEGFR2 signaling pathways occurred, and FX substantially reduced expression of TGF-ß1 in the glomeruli. FX significantly inhibited TGF-ß1, Smad2/3 total protein levels, Smad2/3 phosphorylation mRNA levels of TGF-ß1, Smad2, and Smad3. eNOS, VEGFA, and VEGFR2 expression was regulated, levels of VEGFA and VEGFR2 were decreased, and FX increased eNOS. FX ameliorated symptoms of DN, resulting in marked improvement in hyperglycemia and hyperlipidemia and optimized structure and function of kidneys in db/db mice. FX efficacy was associated with the TGF-ß1/Smad and VEGF/VEGFR2 signaling pathways. We verified this potential mechanism and hope that this study will provide benefits for the clinical treatment of DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Nefropatias Diabéticas/tratamento farmacológico , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Farmacologia em Rede/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Smad/antagonistas & inibidores , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225442

RESUMO

Mountain ginseng (Panax ginseng) has been used for cancer patient therapy in Northeast Asia. Although it is well known that cancer cells are able to induce angiogenesis, the effect of mountain ginseng on angiogenesis is still unknown. In the present study, we investigated whether ethanolic extract of mountain ginseng (MGE) could inhibit angiogenesis in in vitro and in vivo models. In comparison with farm­cultivated ginseng extract (FGE), MGE more strongly inhibited cell migration and formation of capillary­like network within non­cytotoxic ranges in SVEC4­10 cells. In addition, MGE dose­dependently suppressed Transwell cell migration of the cells. Moreover, MGE reduced the phosphorylation and expression of VEGF­R2 as well as the phosphorylation of FAK, Src, Akt and ERK, the intermediate proteins in the VEGF­R2 signaling cascade, in the cells. As expected, MGE dramatically decreased hemoglobin content in Matrigel plugs in mice. In conclusion, MGE possesses stronger anti­angiogenic properties than FGE in vascular endothelial cells. Such effect of MGE is correlated with inhibition of activation of the VEGF­R2 signaling pathway. Therefore, the novel features of MGE may be helpful for understanding its anticancer mechanism for the treatment of cancer patients.


Assuntos
Movimento Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemoglobinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Panax/química , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Ethnopharmacol ; 271: 113886, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Decoction (HQD), a traditional Chinese medicinal (TCM) formula chronicled in Shang Han Lun, has been used to treat gastrointestinal diseases for nearly 1800 years. OBJECTIVE: To investigate the effects and underlying mechanisms of HQD on ulcerative colitis (UC). METHODS: The bioactive compounds in HQD were obtained from the traditional Chinese medicine systems pharmacology database. Then, the HQD and UC-related targets were analyzed by establishing HQD-Compounds-Targets (H-C-T) and protein-protein interaction (PPI) networks. Enrichment analysis was used for further study. The candidate targets for the effects of HQD on UC were validated using a dextran sulfate sodium-induced UC mouse experiment. RESULTS: The results showed that 51 key targets were gained by matching 284 HQD-related targets and 837 UC-related targets. Combined with H-C-T and PPI network analyses, the key targets were divided into endothelial growth, inflammation and signal transcription-related targets. Further experimental validation showed that HQD targeted estrogen receptor alpha (ESR1) and endothelial growth factor receptors to relieve endothelial dysfunction, thereby improving intestinal barrier function. The expression of inflammatory cytokines and signal transducers was suppressed by HQD treatment and inflammation was inhibited. CONCLUSIONS: HQD may acts on UC via the regulation of targets and pathways related to improving the intestinal mucosal barrier and ameliorating endothelial dysfunction. Additionally, ERS1 may be a new target to explore the mechanisms of UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Scutellaria baicalensis/química , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Endotélio/efeitos dos fármacos , Receptores ErbB/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mapas de Interação de Proteínas , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Nutrients ; 13(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567572

RESUMO

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds-kaempferol and quercetin-against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


Assuntos
Antineoplásicos/farmacologia , Crassulaceae , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Inibidores da Angiogênese/farmacologia , Humanos , Quempferóis/farmacologia , Plantas Medicinais , Quercetina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
J Ethnopharmacol ; 267: 113475, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068653

RESUMO

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) usually refers to myocardial ischemia or myocardial necrosis caused by coronary artery stenosis. GeGen and DanShen (GD) are popular Chinese herbs for the treatment of angina pectoris and myocardial infarction (MI). This sentence needs to be a separate paragraph. AIM OF THE STUDY: This study was to investigate the role of GD extract in promoting ischemic myocardial angiogenesis, and to explore its signaling mechanism, so as to provide a more reliable scientific basis for the clinical treatment of ischemic cardiovascular disease. MATERIALS AND METHODS: GD extract was initially analyzed by HPLC-Q-TOF MS. In vitro, migration assay and tube formation assay were subsequently used to detect the angiogenesis activity of GD extract in human umbilical vein endothelial cells (HUVECs). Following the in vitro study, an MI rat model was established by ligating the left anterior descending coronary artery (LAD), immediately followed by a 4-week daily GD extract treatment by intragastric administration. After the animal sacrifice, hematoxylin-eosin (HE) staining was conducted to observe the pathological changes of the infarct margin. Besides, the MI area was measured by 2,3,5-triphenyltetrazoliumchloride (TTC) staining. The microvascular density (MVD) was also quantified through CD31 immunohistochemistry. Moreover, the levels of VEGF, TXB2 and 6-keto-PGF1α in serum were detected by enzyme-linked immunosorbent assay. The expression of VEGFR2 and ERK were detected by immunohistochemistry as well. RESULTS: In vitro study, GD extract was found to induce significant angiogenesis in HUVECs. In vivo, smaller infarct size was found in treatment groups than that of the model group, and the protein expression of VEGFR2 as well as ERK in the marginal zone of MI in treatment groups were significantly increased. The morphological changes of myocardium were observed with a significant growth in the number of new blood vessels. Regarding the effect of GD extract, the serum levels of CK, LDH and TXB2 were consequently reduced, whereas the levels of VEGF, 6-keto-PGF1α were significantly increased. CONCLUSIONS: Based on the findings of this study, GD extract had a protective effect against MI in rats. The possible mechanism is to promote angiogenesis by regulating the VEGF/VEGFR2 signaling pathway after MI occurrence.


Assuntos
Indutores da Angiogênese/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Densidade Microvascular/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos Sprague-Dawley , Transdução de Sinais
20.
Phytomedicine ; 81: 153408, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234363

RESUMO

BACKGROUND: Therapeutic regimens of breast cancer treatment are increasingly inclined to adopt combination strategy based on the broad spectrum antitumor effect of doxorubicin (Dox). Currently, combination therapy comprises of conventional anti-cancer drugs and angiogenesis inhibitors have been corroborated as an effective approach in cancer treatment. PURPOSE: We explored the ability of a natural anti-angiogenic compound glycyrrhetinic acid (GA), derived from an edible-medicinal herb licorice, to enhance the breast cancer suppression effect of Dox. STUDY DESIGN: The drug ratio of GA and Dox with synergistic anticancer effect against MCF-7 cells was optimized by combination index (CI) value in vitro, followed by evaluation of the improved anticancer effects and reduced side-effects of this combination in vitro and in vivo. METHODS: Cell viability was measured by MTT assay. Analyses of mitochondrial membrane potential and cell apoptosis on MCF-7 cells were performed by JC-1 dye and Annexin V-FITC/PI assays. The cellular accumulation of Dox when combined with GA was evaluated. Levels of apoptosis-related proteins in MCF-7 cells were measured by Western blot analysis. Synergistic anti-angiogenic effects on HUVECs were evaluated. A breast cancer mouse model was established to investigate the anti-tumor effects in vivo. RESULTS: Based on the optimization by CI value, Dox and GA at 1:20 molar ratio was chosen as the optimal combination drug ratio that exhibited synergistic effect against MCF-7 breast cancer cells. In addition, the combination of GA and Dox exhibited significantly enhanced cytotoxicity, apoptosis, and loss of mitochondrial membrane potential via the upregulation of a mitochondrial-dependent apoptosis pathway against MCF-7 cells. Interestingly, the addition of GA increased the intracellular accumulation of Dox in MCF-7 cells. Moreover, VEGF-induced HUVECs proliferation, migration, and tube formation were strongly inhibited by Dox when used with GA via the significant down-regulation of VEGFR2-mediated pathway, indicating that the combination of Dox and GA could exhibit ideal synergistic anti-angiogenesis effect. Expectedly, the enhanced anti-tumor efficacy of Dox and reduced Dox-induced cardiotoxicity when used in combination with GA were evident in a mouse breast tumor model. CONCLUSIONS: These findings support that the combination of Dox with GA is a novel and promising therapeutic strategy for the treatment of breast cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Feminino , Ácido Glicirretínico/administração & dosagem , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA