Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta ; 1863(5): 790-803, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26772785

RESUMO

Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.


Assuntos
Regulação da Expressão Gênica de Plantas , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Molecular , Cebolas/genética , Cebolas/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo
2.
Free Radic Biol Med ; 84: 296-310, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25801291

RESUMO

Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Bainha de Mielina/metabolismo , Plasmalogênios/farmacologia , Animais , Quelantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ácido Edético/farmacologia , Formiatos/farmacologia , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Oxirredução , Estresse Oxidativo , Receptor 2 de Sinal de Orientação para Peroxissomos , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
3.
J Biol Chem ; 286(52): 45048-62, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22057399

RESUMO

The import of a subset of peroxisomal matrix proteins is mediated by the peroxisomal targeting signal 2 (PTS2). The results of our sequence and physical property analysis of known PTS2 signals and of a mutational study of the least characterized amino acids of a canonical PTS2 motif indicate that PTS2 forms an amphipathic helix accumulating all conserved residues on one side. Three-dimensional structural modeling of the PTS2 receptor PEX7 reveals a groove with an evolutionarily conserved charge distribution complementary to PTS2 signals. Mammalian two-hybrid assays and cross-complementation of a mutation in PTS2 by a compensatory mutation in PEX7 confirm the interaction site. An unstructured linker region separates the PTS2 signal from the core protein. This additional information on PTS2 signals was used to generate a PTS2 prediction algorithm that enabled us to identify novel PTS2 signals within human proteins and to describe KChIP4 as a novel peroxisomal protein.


Assuntos
Proteínas Interatuantes com Canais de Kv/genética , Peroxissomos/genética , Sinais Direcionadores de Proteínas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/metabolismo , Estrutura Secundária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Mol Genet Metab ; 99(4): 408-16, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20060764

RESUMO

Rhizomelic chondrodysplasia punctata type 1 is a peroxisome biogenesis disorder with the clinical features of rhizomelia, abnormal epiphyseal calcifications, congenital cataracts, and profound growth and developmental delays. It is a rare autosomal recessive disorder, caused by defects in the peroxisome receptor, PEX7. The pathology results from a deficiency of plasmalogens, a critical class of ether phospholipids whose functions are largely unknown. To study plasmalogens in an animal model, avoid early mortality and facilitate therapeutic investigations in this disease, we engineered a hypomorphic mouse model in which Pex7 transcript levels are reduced to less than 5% of wild type. These mice are born in expected ratios, are fertile and have a normal life span. However, they are petite and develop early cataracts. Further investigations showed delayed endochondral ossification and abnormalities in lens fibers. The biochemical features of reduced Pex7 function were reproduced in this model, including tissue plasmalogen deficiency, phytanic acid accumulation, reduced import of Pex7 ligands and consequent defects in plasmalogen biosynthesis and phytanic acid oxidation. Dietary supplementation with batyl alcohol, a plasmalogen precursor, recovered ether phospholipids in blood, but did not alter the clinical phenotype. The relatively mild phenotype of these mice mimics patients with milder PEX7 defects, and highlights the skeleton and lens as sensitive markers of plasmalogen deficiency. The role of plasmalogens in the normal function of these tissues at various ages can now be studied and additional therapeutic interventions tested in this model.


Assuntos
Osso e Ossos/metabolismo , Condrodisplasia Punctata Rizomélica/genética , Modelos Animais de Doenças , Cristalino/patologia , Peroxissomos/fisiologia , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Células Cultivadas , Condrodisplasia Punctata Rizomélica/terapia , Suplementos Nutricionais , Éteres de Glicerila/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 2 de Sinal de Orientação para Peroxissomos , Fenótipo , Ácido Fitânico/metabolismo , Distribuição Tecidual
5.
Nat Genet ; 17(2): 185-9, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9326939

RESUMO

Refsum disease is an autosomal recessive disorder characterized by retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia and increased cerebrospinal fluid protein. Biochemically, the disorder is defined by two related properties: pronounced accumulation of phytanic acid and selective loss of the peroxisomal dioxygenase required for alpha-hydroxylation of phytanoyl-CoA2. Decreased phytanic-acid oxidation is also observed in human cells lacking PEX7, the receptor for the type-2 peroxisomal targetting signal (PTS2; refs 3,4), suggesting that the enzyme defective in Refsum disease is targetted to peroxisomes by a PTS2. We initially identified the human PAHX and mouse Pahx genes as expressed sequence tags (ESTs) capable of encoding PTS2 proteins. Human PAHX is targetted to peroxisomes, requires the PTS2 receptor for peroxisomal localization, interacts with the PTS2 receptor in the yeast two-hybrid assay and has intrinsic phytanoyl-CoA alpha-hydroxylase activity that requires the dioxygenase cofactor iron and cosubstrate 2-oxoglutarate. Radiation hybrid data place PAHX on chromosome 10 between the markers D10S249 and D10S466, a region previously implicated in Refsum disease by homozygosity mapping. We find that both Refsum disease patients examined are homozygous for inactivating mutations in PAHX, demonstrating that mutations in PAHX can cause Refsum disease.


Assuntos
Oxigenases de Função Mista/genética , Doença de Refsum/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Humanos Par 10/genética , Análise Mutacional de DNA , Primers do DNA/genética , DNA Complementar/genética , Expressão Gênica , Homozigoto , Humanos , Camundongos , Microcorpos/metabolismo , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Receptor 2 de Sinal de Orientação para Peroxissomos , Reação em Cadeia da Polimerase , Receptores Citoplasmáticos e Nucleares/metabolismo , Doença de Refsum/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA