Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640721

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação , Polissacarídeos , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Polissacarídeos/farmacologia , Polissacarídeos/química , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antígeno 96 de Linfócito/antagonistas & inibidores , Antígeno 96 de Linfócito/metabolismo , Carthamus tinctorius/química , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
2.
ACS Appl Mater Interfaces ; 14(4): 5066-5079, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041392

RESUMO

Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.


Assuntos
Portadores de Fármacos/química , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Nanopartículas/química , RNA Interferente Pequeno/farmacologia , Animais , Antígeno CD11b/antagonistas & inibidores , Antígeno CD11b/genética , Lipídeos/química , Masculino , Poliésteres/química , Polietilenoglicóis/química , Ratos Wistar , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
3.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946578

RESUMO

Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15-30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5-20 µmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 µmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-ß. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of -(21.9-28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.


Assuntos
Anti-Inflamatórios/farmacologia , Células Epiteliais/efeitos dos fármacos , Flavonoides/farmacologia , Temperatura Alta , Mucosa Intestinal/efeitos dos fármacos , Quercetina/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Células Epiteliais/metabolismo , Flavonoides/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quercetina/química , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
4.
Arch Biochem Biophys ; 714: 109080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742934

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Colestenonas/farmacologia , Dieta Hiperlipídica , Lipopolissacarídeos/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Probióticos , Animais , Peso Corporal/efeitos dos fármacos , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
5.
Oxid Med Cell Longev ; 2021: 4190098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777686

RESUMO

Osteoarthritis (OA), a highly prevalent chronic joint disease, involves a complex network of inflammatory mediators that not only triggers pain and cartilage degeneration but also accelerates disease progression. Traditional Chinese medicinal shenjinhuoxue mixture (SHM) shows anti-inflammatory and analgesic effects against OA with remarkable clinical efficacy. This study explored the mechanism underlying anti-OA properties of SHM and evaluated its efficacy and safety via in vivo experiments. Through network pharmacology and published literature, we identified the key active phytochemicals in SHM, including ß-sitosterol, oleanolic acid, licochalcone A, quercetin, isorhamnetin, kaempferol, morusin, lupeol, and pinocembrin; the pivotal targets of which are TLR-4 and NF-κB, eliciting anti-OA activity. These phytochemicals can enter the active pockets of TLR-4 and NF-κB with docking score ≤ -3.86 kcal/mol, as shown in molecular docking models. By using surface plasmon resonance assay, licochalcone A and oleanolic acid were found to have good TLR-4-binding affinity. In OA rats, oral SHM at mid and high doses (8.72 g/kg and 26.2 g/kg) over 6 weeks significantly alleviated mechanical and thermal hyperalgesia (P < 0.0001). Accordingly, the expression of inflammatory mediators (TLR-4, interleukin (IL-) 1 receptor-associated kinase 1 (IRAK1), NF-κB-p65, tumor necrosis factor (TNF-) α, IL-6, and IL-1ß), receptor activator of the NF-κB ligand (RANKL), and transient receptor potential vanilloid 1 (TRPV1) in the synovial and cartilage tissue of OA rats was significantly decreased (P < 0.05). Moreover, pathological observation illustrated amelioration of cartilage degeneration and joint injury. In chronic toxicity experiment of rats, SHM at 60 mg/kg demonstrated the safety. SHM had an anti-inflammatory effect through a synergistic combination of active phytochemicals to attenuate pain and cartilage degeneration by inhibiting TLR-4 and NF-κB activation. This study provided the experimental foundation for the development of SHM into a more effective dosage form or new drugs for OA treatment.


Assuntos
Doenças das Cartilagens/prevenção & controle , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Osteoartrite/complicações , Dor/prevenção & controle , Compostos Fitoquímicos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Doenças das Cartilagens/etiologia , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/patologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Dor/etiologia , Dor/metabolismo , Dor/patologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia
6.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771068

RESUMO

Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/ß and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Caragana/química , Inflamação/tratamento farmacológico , Metanol/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
7.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382796

RESUMO

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glucosamina/farmacologia , Glicolipídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Feminino , Glucosamina/síntese química , Glucosamina/metabolismo , Glucosamina/toxicidade , Glicolipídeos/síntese química , Glicolipídeos/metabolismo , Glicolipídeos/toxicidade , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
8.
J Immunol Res ; 2021: 6629531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212053

RESUMO

Baicalin (BA) magnesium salt (BA-Mg) is a good water-soluble ingredient extracted from Scutellaria baicalensis Georgi, a commonly used traditional Chinese medicine. This study is aimed at investigating whether BA-Mg could exert a better protective effect on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and illuminate the underlying mechanisms in vivo and in vitro. Mice were intraperitoneally administrated with equimolar BA-Mg, BA, and MgSO4 before LPS inducing ALI. Lung tissues and bronchoalveolar lavage fluid were collected for lung wet/dry ratio, histological examinations, cell counts, and biochemical analyses at 48 h post-LPS exposure. Meanwhile, the protein expressions of TLR4/NF-κB signaling pathway and proinflammatory cytokines in lung tissues and lung bronchial epithelial cells (BEAS-2B) were detected. The results showed BA-Mg pronouncedly ameliorated LPS-induced inflammatory response and histopathological damages, elevated antioxidant enzyme activity (SOD), and downregulated myeloperoxidase (MPO) and malonaldehyde (MDA) levels through the inhibition of TLR4/NF-κB signaling pathway activation. Moreover, the effect of BA-Mg was significantly better than that of BA and MgSO4 in ameliorating symptoms. Overall, BA-Mg can effectively relieve inflammatory response and oxidative stress triggered by LPS, indicating it may be a potential therapeutic candidate for treating ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Flavonoides/farmacologia , Extratos Vegetais/química , Scutellaria baicalensis/química , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Magnésio/química , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
9.
Inflammopharmacology ; 29(4): 1187-1200, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34244900

RESUMO

Lagotis brachystachya Maxim is a herb widely used in traditional Tibetan medicine. Our previous study indicated that total extracts from Lagotis brachystachya could lower uric acid levels. This study aimed to further elucidate the active components (luteolin, luteoloside and apigenin) isolated from Lagotis brachystachya and the underlying mechanism in vitro and in vivo. The results showed that treatment with luteolin and luteoloside reversed the reduction of organic anion transporter 1 (OAT1) levels, while apigenin attenuated the elevation of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) levels in uric acid-treated HK-2 cells, which was consistent with the finding in the kidneys of potassium oxonate (PO)-induced mice. On the other hand, hepatic xanthine oxidase activity was inhibited by the components. In addition, all of these active components improved the morphology of the kidney in hyperuricemic mice. Moreover, molecular docking showed that luteolin, luteoloside and apigenin could bind Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3). Congruently, western blot analysis showed that the components inhibited TLR4/myeloid differentiation primary response 88 (MyD88)/NLRP3 signaling. In conclusion, these results indicated that luteolin, luteoloside and apigenin could attenuate hyperuricemia by decreasing the production and increasing the excretion of uric acid, which were mediated by inhibiting inflammatory signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hiperuricemia/metabolismo , Rim/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Ácido Úrico/metabolismo , Animais , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hiperuricemia/tratamento farmacológico , Rim/efeitos dos fármacos , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Plantas Medicinais , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Ácido Úrico/toxicidade
10.
Phytomedicine ; 87: 153569, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33985878

RESUMO

BACKGROUND: Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4) on microglia have been found as important regulators in the inflammatory response during cerebral ischemia/reperfusion (I/R). In China, traditional Chinese medicine Salvia miltiorrhiza (danshen) and its some components are considered to be effective in rescuing cerebral I/R injury through clinical practice. HYPOTHESIS/PURPOSE: Here we examined the effect of Salvianolic acid A (SAA), a monomer compound in the water extract of Salvia miltiorrhiza, on TLR2/4 of microglia and its mediated inflammatory injury during cerebral I/R in vivo and in vitro. STUDY DESIGN: For exploring the effect of SAA on cerebral I/R and TLR2/4, classic middle cerebral artery occlusion (MCAO) model and oxygen glucose deprivation / reoxygenation (OGD/R) model of co-culture with primary hippocampal neurons and microglia in vitro were used. Signal pathway research and gene knockout have been applied to further explain its mechanism. METHODS: The evaluation indexes of I/R injury included infarct size, edema degree and pathology as well as primary hippocampal neurons and microglia culture, ELISA, western, RT-PCR, HE staining, immunofluorescence, flow cytometry, siRNA gene knockout were also employed. RESULTS: SAA significantly improved the degree of brain edema and ischemic area in I/R rats accompanied by decreases in levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α). Pathological staining revealed that SAA could reduce inflammatory cell infiltration and mcirogila activation after reperfusion. Both protein and gene expression of TLR2 and TLR4 in ischemic hemisphere were obviously inhibited by SAA treatment while changes were not found in the non-ischemic hemisphere. In order to further study its mechanism, OGD/R model was used to mimic inflammatory damage of ischemic tissue by co-culturing primary rat hippocampal neurons and microglial cells. It was found that SAA also inhibited the protein and gene expression of TLR2 and TLR4 after OGD/R injury in microglia. After TLR2/4 knockout, the inhibitory effect of SAA on IL-1ß and TNF-α levels in cell supernatant and neuron apoptosis were significantly weakened in each dose group. Moreover, expression levels of myeloid differentiation factor 88 (MyD88), NFκB, IL-1ß and IL-6 in TLR2/4 mediated inflammatory pathway were reduced with SAA treatment. CONCLUSION: SAA could significantly reduce the inflammatory response and injury in cerebral ischemia-reperfusion in vivo and in vitro, and its mechanism may be through the inhibition of TLR2/4 and its related signal pathway.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ácidos Cafeicos/farmacologia , Lactatos/farmacologia , Microglia/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Isquemia Encefálica/patologia , Ácidos Cafeicos/uso terapêutico , Infarto da Artéria Cerebral Média , Inflamação/metabolismo , Lactatos/uso terapêutico , Masculino , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
11.
Sci Rep ; 11(1): 10531, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006936

RESUMO

Ceramic orthopaedic implants are increasingly popular due to the need for robust total joint replacement implants that have a high success rate long-term and do not induce biological responses in patients. This study was designed to investigate the biological effects of ceramic nanopowders containing aluminium oxide or zirconium oxide to activate the human macrophage THP-1 cell line. In vitro investigation of pro-inflammatory gene expression and chemokine secretion was performed studied using RT-qPCR and ELISA, respectively. TLR4 inhibition, using a small-molecule inhibitor, was used to determine whether ceramic-mediated inflammation occurs in a similar manner to that of metals such as cobalt. THP-1 macrophages were primed with ceramics or LPS and then treated with ATP or ceramics, respectively, to determine whether these nanopowders are involved in the priming or activation of the NLRP3 inflammasome through IL-1ß secretion. Cells treated with ceramics significantly increased pro-inflammatory gene expression and protein secretion which was attenuated through TLR4 blockade. Addition of ATP to cells following ceramic treatment significantly increased IL-1ß secretion. Therefore, we identify the ability of ceramic metal oxides to cause a pro-inflammatory phenotype in THP-1 macrophages and propose the mechanism by which this occurs is primarily via the TLR4 pathway which contributes to inflammasome signalling.


Assuntos
Óxido de Alumínio/farmacologia , Cerâmica , Inflamação/induzido quimicamente , Nanopartículas/química , Pós/farmacologia , Zircônio/farmacologia , Artroplastia de Quadril , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose , Células THP-1 , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
12.
Carbohydr Polym ; 263: 117998, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858583

RESUMO

Herein, dual-bioresponsive of Rhein (RH) in promoting colonic mucous damage repair and controlling inflammatory reactions were combined by the dual-targeting (intestinal epithelial cells and macrophages) oral nano delivery strategy for effective therapy of ulcerative colitis (UC). Briefly, two carbohydrates, calcium pectinate (CP) and hyaluronic acid (HA) were used to modify lactoferrin (LF) nanoparticles (NPs) to encapsulate RH (CP/HA/RH-NPs). CP layer make CP/HA/RH-NPs more stable and protect against the destructive effects of the gastrointestinal environment and then release HA/RH-NPs to colon lesion site. Cellular uptake evaluation confirmed that NPs could specifically target and enhance the uptake rate via LF and HA ligands. in vivo experiments revealed that CP/HA/RH-NPs significantly alleviated inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway and accelerated colonic healing. Importantly, with the help of CP, this study was the first to attempt for LF as a targeting nanomaterial in UC treatment and offers a promising food-based nanodrug in anti-UC.


Assuntos
Antraquinonas/farmacologia , Colite Ulcerativa/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Ácido Hialurônico/química , Lactoferrina/química , Nanopartículas/química , Pectinas/química , Animais , Antraquinonas/química , Transporte Biológico , Linhagem Celular , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Inibidores Enzimáticos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/antagonistas & inibidores , Nanopartículas/uso terapêutico , Receptores de Superfície Celular/metabolismo , Proteínas de Junções Íntimas/metabolismo , Distribuição Tecidual , Receptor 4 Toll-Like/antagonistas & inibidores
13.
Mol Nutr Food Res ; 65(10): e2000943, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650755

RESUMO

SCOPE: Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS: Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS: These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.


Assuntos
Comportamento Animal/efeitos dos fármacos , Óleo de Coco/administração & dosagem , Óleo de Coco/efeitos adversos , Doenças Hipotalâmicas/induzido quimicamente , Inflamação/induzido quimicamente , Doenças Metabólicas/induzido quimicamente , Adiposidade/efeitos dos fármacos , Animais , Glicemia/análise , Suplementos Nutricionais , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia , Aumento de Peso/efeitos dos fármacos
14.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540826

RESUMO

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Glicolipídeos/uso terapêutico , Hiperalgesia/prevenção & controle , Ceratite/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor 4 Toll-Like/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glicolipídeos/farmacologia , Células HEK293 , Humanos , Hiperalgesia/etiologia , Ceratite/induzido quimicamente , Ceratite/patologia , Lipopolissacarídeos/toxicidade , Antígeno 96 de Linfócito/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Modelos Moleculares , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Conformação Proteica , Células RAW 264.7 , Distribuição Aleatória , Nervo Isquiático/lesões , Canal de Cátion TRPA1/metabolismo
15.
Life Sci ; 271: 119155, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548286

RESUMO

Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/imunologia , Animais , Sistemas de Liberação de Medicamentos/tendências , Medicamentos de Ervas Chinesas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Glucocorticoides/administração & dosagem , Humanos , Inibidores da Bomba de Prótons/administração & dosagem , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia
16.
J Ethnopharmacol ; 264: 113052, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535239

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. as a traditional Asian medicinal plant, roots and rhizomes (Danshen) are used to treat chronic hepatitis and coronary heart disease. In recent years, the medicinal value of S. miltiorrhiza stems and leaves total phenolic acids extract (JF) similar to roots and rhizomes has received increasing attention. S. miltiorrhiza roots and rhizome tanshinone extract (DT) has a good anti-inflammatory effect. AIM OF THE STUDY: To explore the therapeutic effect and possible molecular mechanisms of JF and DT alone or in combination on dextran sulfate sodium (DSS)-induced colitis mice. MATERIALS AND METHODS: Colitis was induced by received 2% DSS in drinking water for 7 consecutive days. Then mice were administered orally for 7 days. Disease activity index (DAI) scores and body weight were recorded daily. After the end of the experiment, colon was removed, colon length was measured and histopathological analysis was performed. Inflammatory factors expression was determined by ELISA, its mRNA expression was detected by real-time quantitative PCR, and the expression of related proteins on TLR4/PI3K/AKT/mTOR signal was analyzed by Western blot. RESULTS: Treatment with JF and DT alone or in combination reduced DAI scores, increase body weight, improved colon shortening, and decreased colon histology scores. In addition, the expression level of inflammatory factors was inhibited. The combination of JF and DT had a better inhibitory effect on inflammatory factors compared to JF alone. We also found that DT alone and JF combined with DT inhibited TLR4/PI3K/AKT/mTOR signaling-related proteins expression levels (including TLR4, p-PI3K p110α/PI3K p110α, p-AKT (ser473)/AKT, mTOR, p-mTOR, NF-κB p65), showing an effective anti-inflammatory effect. CONCLUSIONS: We demonstrated for the first time that, JF and DT alone or in combination effectively ameliorated DSS-induced ulcerative colitis in mice, possibly by inhibiting the TLR4/PI3K/AKT/mTOR signaling pathway.


Assuntos
Abietanos/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Hidroxibenzoatos/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Salvia miltiorrhiza , Serina-Treonina Quinases TOR/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Quimioterapia Combinada , Hidroxibenzoatos/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Caules de Planta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
17.
J Ethnopharmacol ; 269: 113670, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33301917

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Canna is used in folk medicine as demulcent, diaphoretic, antipyretic, mild laxative and in gastrointestinal upsets therapy. Canna x generalis (CG) L.H. Bailey is traditionally used as anti-inflammatory, analgesic and antipyretic. Besides, CG is used in Ayurvedic medicines' preparations and in the treatment of boils, wounds, and abscess. Nevertheless, its anti-inflammatory effects against ulcerative colitis (UC) are not yet investigated. AIM: This study aimed to investigate the phytoconstituents of CG rhizome ethanol extract (CGE). Additionally, we aimed to comparatively evaluate its therapeutic effects and underlying mechanisms against the reference drug "sulphasalazine (SAS)" in dextran sodium sulfate (DSS)-induced UC in mice. MATERIAL AND METHODS: Metabolic profiling of CG rhizomes was performed via UHPLC/qTOF-HRMS; the total phenolic, flavonoid and steroid contents were determined, and the main phytoconstituents were isolated and identified. Next, DSS-induced (4%) acute UC was established in C57BL/6 mice. DSS-induced mice were administered either CGE (100 and 200 mg/kg) or SAS (200 mg/kg) for 7 days. Body weight, colon length, disease activity index (DAI) and histopathological alterations in colon tissues were examined. Colon levels of oxidative stress (GSH, MDA, SOD and catalase) and pro-inflammatory [Myeloperoxidase (MPO), nitric oxide (NO), IL-1ß, IL-12, TNF-α, and INF-γ] markers were colourimetrically determined. Serum levels of lipopolysaccharide (LPS) and relative mRNA expressions of occludin, TLR4 and ASC (Apoptosis-Associated Speck-Like Protein Containing CARD) using RT-PCR were measured. Protein levels of NLRP3 inflammasome and cleaved caspase-1 were determined by Western blot. Furthermore, immunohistochemical examinations of caspase-3, NF-Ò¡B and claudin-1 were performed. RESULTS: Major identified constituents of CGE were flavonoids, phenolic acids, phytosterols, beside five isolated phytoconstituents (ß-sitosterol, triacontanol fatty alcohol, ß-sitosterol-3-O-ß-glucoside, rosmarinic acid, 6-O-p-coumaroyl-ß-D-fructofuranosyl α-D-glucopyranoside). The percentage of the phenolic, flavonoid and steroid contents in CGE were 20.55, 6.74 and 98.09 µg of gallic acid, quercetin and ß-sitosterol equivalents/mg extract, respectively. In DSS-induced mice, CGE treatment ameliorated DAI, body weight loss and colon shortening. CGE attenuated the DSS-induced colonic histopathological alternations, inflammatory cell infiltration and histological scores. CGE elevated GSH, SOD and catalase levels, and suppressed MDA, pro-inflammatory mediators (MPO and NO) as well as cytokines levels in colonic tissues. Moreover, CGE downregulated LPS/TLR4 signaling, caspase-3 and NF-Ò¡B expressions. CGE treatment inhibited NLRP3 signaling pathway as indicated by the suppression of the protein expression of NLRP3 and cleaved caspase-1, and the ASC mRNA expression in colonic tissues. Additionally, CGE restored tight junction proteins' (occludin and claudin-1) expressions. CONCLUSION: Our findings provided evidence for the therapeutic potential of CGE against UC. CGE restored intestinal mucosal barrier's integrity, mitigated oxidative stress, inflammatory cascade, as well as NF-Ò¡B/TLR4 and NLRP3 pathways activation in colonic tissues. Notably, CGE in a dose of 200 mg/kg was more effective in ameliorating DSS-induced UC as compared to SAS at the same dose.


Assuntos
Colite/tratamento farmacológico , Sulfato de Dextrana/toxicidade , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Extratos Vegetais/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
18.
J Nat Med ; 75(1): 37-47, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32761488

RESUMO

Monosodium urate (MSU)-mediated inflammation is closely related to gouty arthritis (GA). Dioscin, an active ingredient, has been reported to possess anti-inflammatory property. Nevertheless, the role of dioscin in GA and the underlying mechanism have not been fully understood. In the present study, we investigated the anti-inflammatory effect of dioscin on MSU-induced GA through in vivo and in vitro experiments. Histopathological analysis showed that dioscin alleviated the severity of GA concomitant with the lowered uric acid and creatinine levels. Moreover, the increasing IL-1ß, IL-6, and TNF-α levels induced by MSU were decreased via administration of dioscin in mice and human synoviocytes. Western blotting results suggested that dioscin inhibited the activation of NLRP3 through down-regulating the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved-caspase-1, as well as IL-1ß. In addition, TLR4, myeloid differentiation primary response gene 88 (MyD88), p-IKKß, p-p65, and NF-κB p65 in nuclei levels were significantly reduced by dioscin. Importantly, dioscin remarkably lowered the NF-κB p65-DNA activity in MSU-treated mice utilizing electrophoretic mobility shift assay (EMSA) analysis. Taken together, dioscin had a protective effect against MSU-initiated inflammatory response via repressing the production of inflammatory cytokines and the activation of inflammasome NLRP3 and TLR4/NF-κB signaling pathway. The above findings revealed that dioscin could be a potential drug for the treatment of GA.


Assuntos
Artrite Gotosa/tratamento farmacológico , Diosgenina/análogos & derivados , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/efeitos dos fármacos , Ácido Úrico/efeitos adversos , Animais , Artrite Gotosa/patologia , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
19.
Bioorg Chem ; 104: 104246, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911197

RESUMO

Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 µM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Colinesterase/farmacologia , Cunninghamella/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fenantrenos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cunninghamella/química , Relação Dose-Resposta a Droga , Electrophorus , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , Oxigênio/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 4 Toll-Like/metabolismo
20.
J Ethnopharmacol ; 262: 113275, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32810620

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Forsythiae Fructuse water extract (FSE) is a water-soluble component extracted from the traditional Chinese medicine Forsythiae Fructuse (The fruit of Forsythia suspensa (Thunb.) Vahl) usually used to treat inflammatory diseases. However, little is known about the therapeutic effect of FSE on liver fibrosis. AIM OF THE STUDY: The purpose of our study was to investigate the therapeutic effect of FSE on liver fibrosis and reveal the underlying mechanism. MATERIALS AND METHODS: Liver fibrosis model was established by subcutaneous injection of olive oil containing 40% CCl4. Rat liver tissue morphologic pathology was investigated by using HE staining, Masson staining and Sirius red staining. Several biochemical markers including liver (ALT, AST, AKP, γ-GT), fibrosis (HA, LN, PC III, Col IV) and inflammation (IL-6, IL-1ß, TNF-α) were determined by using Elisa kits. Immunohistochemistry was used to observe the distribution of α-SMA and COL1 in liver tissue. Effects of FSE on inflammatory pathway (TLR4/MyD88/NF-κB) and fibrotic pathway (TGF-ß/smads) were detected by western blot and qPCR. RESULTS: The results showed that hepatic histopathological injury, abnormal liver function, fibrosis and inflammation induced by CCl4 were improved by FSE (2.5, 5 g/kg). Immunohistochemistry and western blot results indicated that the expression of α-SMA and COL1 in liver tissue was inhibited by FSE (2.5, 5 g/kg). Western blot and qPCR results further proved that FSE (2.5, 5 g/kg) inhibited the transduction of TLR4/MyD88/NF-κB and TGF-ß/smads signaling pathways. CONCLUSION: FSE can inhibit the expression of inflammatory factors and fibrotic cytokines, reduce liver injury, and inhibit the development of liver fibrosis through TLR4/MyD88/NF-κB and TGF-ß/smads signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Forsythia , Cirrose Hepática/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA