Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 34, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448811

RESUMO

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Assuntos
Resistência à Insulina , Animais , Camundongos , Glucose , Hipotálamo , Resistência à Insulina/genética , Neurônios , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/genética
2.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398881

RESUMO

This study aimed to determine the impact of a fiber supplement on body weight and composition in individuals with obesity with specific genetic polymorphisms. It involved 112 adults with obesity, each with at least one minor allele in the FTO, LEP, LEPR, or MC4R polymorphism. Participants were randomized to receive either a fiber supplement (glucomannan, inulin, and psyllium) or a placebo for 180 days. The experimental group showed significant reductions in body weight (treatment difference: -4.9%; 95% CI: -6.9% to -2.9%; p < 0.01) and BMI (treatment difference: -1.4 kg/m2; 95% CI: -1.7 to -1.2; p < 0.01) compared to placebo. Further significant decreases in fat mass (treatment difference: -13.0%; 95% CI: -14.4 to -11.7; p < 0.01) and visceral fat rating (treatment difference: -1.3; 95% CI: -1.6 to -1.0; p < 0.01) were noted. Homozygous minor allele carriers experienced greater decreases in body weight (treatment difference: -3.2%; 95% CI: -4.9% to -1.6%; p < 0.01) and BMI (treatment difference: -1.2 kg/m2; 95% CI: -2.0 to -0.4; p < 0.01) compared to heterozygous allele carriers. These carriers also had a more significant reduction in fat mass (treatment difference: -9.8%; 95% CI: -10.6 to -9.1; p < 0.01) and visceral fat rating (treatment difference: -0.9; 95% CI: -1.3 to -0.5; p < 0.01). A high incidence of gastrointestinal events was reported in the experimental group (74.6%), unlike the placebo group, which reported no side effects. Dietary supplementation with glucomannan, inulin, and psyllium effectively promotes weight loss and improves body composition in individuals with obesity, particularly those with specific genetic polymorphisms.


Assuntos
Inulina , Mananas , Psyllium , Adulto , Humanos , Psyllium/uso terapêutico , Polimorfismo de Nucleotídeo Único , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/epidemiologia , Peso Corporal/genética , Redução de Peso/genética , Suplementos Nutricionais , Índice de Massa Corporal , Receptor Tipo 4 de Melanocortina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
3.
CNS Neurosci Ther ; 29(2): 646-658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510669

RESUMO

AIMS: Central melanocortin 4 receptor (MC4R) has been reported to induce anhedonia via eliciting dysfunction of excitatory synapses. It is evident that metabolic signals are closely related to chronic stress-induced depression. Here, we investigated that a neural circuit is involved in melanocortin signaling contributing to susceptibility to stress. METHODS: Chronic social defeat stress (CSDS) was used to develop depressive-like behavior. Electrophysiologic and chemogenetic approaches were performed to evaluate the role of paraventricular thalamus (PVT) glutamatergic to nucleus accumbens shell (NAcsh) circuit in stress susceptibility. Pharmacological and genetic manipulations were applied to investigate the molecular mechanisms of melanocortin signaling in the circuit. RESULTS: CSDS increases the excitatory neurotransmission in NAcsh through MC4R signaling. The enhanced excitatory synaptic input in NAcsh is projected from PVT glutamatergic neurons. Moreover, chemogenetic manipulation of PVTGlu -NAcsh projection mediates the susceptibility to stress, which is dependent on MC4R signaling. Overall, these results reveal that the strengthened excitatory neurotransmission in NAcsh originates from PVT glutamatergic neurons, facilitating the susceptibility to stress through melanocortin signaling. CONCLUSIONS: Our results make a strong case for harnessing a thalamic circuit to reorganize excitatory synaptic transmission in relieving stress susceptibility and provide insights gained on metabolic underpinnings of protection against stress-induced depressive-like behavior.


Assuntos
Núcleo Accumbens , Receptor Tipo 4 de Melanocortina , Núcleo Accumbens/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Tálamo , Neurônios/metabolismo , Transmissão Sináptica
4.
Arq. ciências saúde UNIPAR ; 26(2): 159-174, maio-ago. 2022.
Artigo em Português | LILACS | ID: biblio-1372969

RESUMO

A obesidade é definida pelo excesso de gordura corporal acumulada no tecido adiposo quando o indivíduo atinge valores de IMC igual ou superior a 30 Kg/m2. Constitui um dos principais fatores de risco para várias doenças não transmissíveis (DNTs) como por exemplo, diabetes mellitus tipo 2 (DM2), doenças cardiovasculares, hipertensão arterial, acidente vascular cerebral e até mesmo o câncer. Embora a obesidade esteja diretamente relacionada com o consumo calórico excessivo em relação ao gasto energético diário, sua etiologia pode estar associada aos baixos níveis de atividade física, às alterações neuroendócrinas e aos fatores genéticos. Considerando o componente genético, esta pode ser classificada como sindrômicas e estar associada às alterações cromossômicas estruturais ou numéricas, ou como não sindrômica, quando relacionada, principalmente, com os polimorfismos de nucleotídeos simples (SNPs) em alelos que atuam como herança monogênica, ou ainda com a interação vários genes (poligênica multifatorial). Apesar de existirem muitas etiologias diferentes, normalmente a obesidade é tratada a partir da mesma abordagem, desconsiderando a fisiologia que a desencadeou. Dessa forma, o objetivo do presente trabalho foi abordar a obesidade genética não sindrômica por meio a) da descrição breve de perspectiva histórica sobre seu entendimento; b) da exposição dos principais mecanismos moleculares envolvidos com o controle de peso; c) da compilação dos principais genes e SNPs relacionados; d) da definição dos principais genes; e e) da abordagem das principais perspectivas de intervenção.


Obesity is defined as excess body fat accumulated in the adipose tissue when the individual reaches BMI values equal to or greater than 30 kg/m2. It is one of the main risk factors for several non-communicable diseases (NCDs), such as Type 2 Diabetes mellitus (T2D), cardiovascular diseases, high blood pressure, stroke and even cancer. Although obesity is directly related to excessive calorie intake in relation to daily energy expenditure, its etiology may be associated with low levels of physical activity, neuroendocrine changes, and genetic factors. Considering the genetic component, it can be classified as syndromic and be associated with chromosomal or numerical changes, or as non-syndromic and being related mainly to single nucleotide polymorphisms (SNPs) in alleles that act as monogenic inheritance, or with an interaction of several genes (multifactorial polygenic). Although there are many different etiologies, obesity is usually treated using the same approach, disregarding the physiology that triggered it. Thus, the aim of this study was to address non-syndromic genetic obesity through a) a brief description of a historical perspective on its understanding; b) the exposure of the main molecular mechanisms involved in weight control, c) the compilation of the key genes and related SNPs, d) the definition of the key genes and e) the approach of the main intervention representations.


Assuntos
Humanos , Masculino , Feminino , Peso Corporal/genética , Epigenômica , Genes/genética , Obesidade/genética , Índice de Massa Corporal , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 4 de Melanocortina/genética , Melanocortinas/genética , Receptores para Leptina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia
5.
Am J Physiol Endocrinol Metab ; 322(5): E436-E445, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344393

RESUMO

The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.


Assuntos
Proteínas de Ligação ao GTP , Obesidade , Receptor Tipo 4 de Melanocortina , Animais , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Ligação ao GTP/metabolismo , Locomoção , Camundongos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética
6.
Mol Metab ; 53: 101317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400348

RESUMO

OBJECTIVE: Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally alters the normal functioning of these receptors and mediates their responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system (CNS). However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS: We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS: Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS: This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.


Assuntos
Melanocortinas/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Hipotálamo/metabolismo , Camundongos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais
7.
Handb Clin Neurol ; 181: 301-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238466

RESUMO

Neural circuits in the hypothalamus play a key role in the regulation of human energy homeostasis. A critical circuit involves leptin-responsive neurons in the hypothalamic arcuate nucleus (the infundibular nucleus in humans) expressing the appetite-suppressing neuropeptide proopiomelanocortin (POMC) and the appetite-stimulating Agouti-related peptide. In the fed state, the POMC-derived melanocortin peptide α-melanocyte-stimulating hormone stimulates melanocortin-4 receptors (MC4Rs) expressed on second-order neurons in the paraventricular nucleus of the hypothalamus (PVN). Agonism of MC4R leads to reduced food intake and increased energy expenditure. Disruption of this hypothalamic circuit by inherited mutations in the genes encoding leptin, the leptin receptor, POMC, and MC4R can lead to severe obesity in humans. The characterization of these and closely related genetic obesity syndromes has informed our understanding of the neural pathways by which leptin regulates energy balance, neuroendocrine function, and the autonomic nervous system. A broader understanding of these neural and molecular mechanisms has paved the way for effective mechanism-based therapies for patients whose severe obesity is driven by disruption of these pathways.


Assuntos
Obesidade , Pró-Opiomelanocortina , Metabolismo Energético/genética , Humanos , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptores para Leptina/genética , Síndrome
8.
Diabetes ; 70(9): 2081-2091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183373

RESUMO

Work in recent decades has established that metabolic hormones released by endocrine cells and diverse other cell types serve to regulate nutrient intake and energy homeostasis. Tsukushi (TSK) is a leucine-rich repeat-containing protein secreted primarily by the liver that exerts an inhibitory effect on brown fat sympathetic innervation and thermogenesis. Despite this, physiological regulation of TSK and the mechanisms underlying its effects on energy balance remain poorly understood. Here we show that hepatic expression and plasma concentrations of TSK are induced by feeding and regulated by melanocortin-4 receptor (MC4R) signaling. We generated TSK and MC4R-double-knockout mice to elucidate the nature of cross talk between TSK and the central regulatory circuit of energy balance. Remarkably, TSK inactivation restores energy balance, ameliorates hyperphagia, and improves metabolic health in MC4R-deficient mice. TSK ablation enhances thermogenic gene expression in brown fat, dampens obesity-association inflammation in the liver and adipose tissue, and protects MC4R-null mice from diet-induced nonalcoholic steatohepatitis. At the cellular level, TSK deficiency augments feeding-induced c-Fos expression in the paraventricular nucleus of the hypothalamus. These results illustrate physiological cross talk between TSK and the central regulatory circuit in maintaining energy balance and metabolic homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Proteoglicanas/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , Proteoglicanas/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais/fisiologia , Termogênese/fisiologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
9.
Nat Commun ; 12(1): 3525, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112797

RESUMO

Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Condução Nervosa/fisiologia , Neurônios Serotoninérgicos/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Cromatografia Líquida , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Masculino , Camundongos , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/efeitos da radiação , Obesidade/metabolismo , Optogenética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos da radiação , Serotonina/metabolismo , Serotonina/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem , Temperatura
10.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33834205

RESUMO

The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcRPVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR2Acre mice to activate, silence, and trace CalcRPVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labeled CalcRPVH neurons demonstrates that CalcRPVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcRPVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor signaling. These data show that CalcRPVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcRPVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.


Assuntos
Metabolismo Energético/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores da Calcitonina/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo
11.
Nutrients ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202557

RESUMO

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Assuntos
Bulimia/genética , Ingestão de Alimentos/genética , Comportamento Alimentar , Hiperfagia/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Índice de Massa Corporal , Ingestão de Alimentos/psicologia , Humanos , Hipotálamo/metabolismo , Motivação , Mutação , Obesidade/psicologia , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Recompensa
12.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895383

RESUMO

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipotálamo/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteína Relacionada com Agouti/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glicemia/análise , Comunicação Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Humanos , Hipotálamo/citologia , Hipotálamo/patologia , Injeções Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , RNA-Seq , Receptor Tipo 4 de Melanocortina/genética , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/metabolismo , Indução de Remissão/métodos , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Técnicas Estereotáxicas , Transcriptoma/efeitos dos fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165835, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32423884

RESUMO

Mutations in the melanocortin-4 receptor (MC4R) in humans are the single most common cause of rare monogenic 1severe obesity, and polymorphisms in this gene are also associated with obesity in the general population. The MC4R is a G-protein coupled receptor, and in vitro analysis suggests that MC4R can signal through several different G-protein subtypes. In vivo studies show complex outcomes, with different G-proteins in different cells responsible for different physiological responses linked to obesity. There is an emerging consensus that Gαq-linked signals in the paraventricular nucleus of the hypothalamus are essential for normal satiety and the control of feeding behavior. Many MC4R mutations have been analyzed for the molecular defect underlying their association with obesity, which has revealed a group - referred to as class V mutants - with no measurable change in receptor function. However, Gαq-linked signaling leading to Ca2+ release has only been examined for a few MC4R mutations. In this study, we have examined seven MC4R class V mutants, as well as two other well-characterized signal-defective mutants as controls, with respect to G-protein signaling coupled to cAMP production, mitogen-activated protein kinase (MAPK) activation, and Ca2+ release. These data confirm, with one exception (E308K), the expected pattern of cAMP and MAPK signaling for wild type and mutant MC4R. Our results also demonstrate normal MSH-induced Ca2+ signals for wild type as well as all the class V mutants, but not the signal-defective controls. Thus, the means by which class V MC4R mutations lead to obesity remains an open question.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Células HEK293 , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , alfa-MSH/farmacologia
14.
Gene ; 741: 144541, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165303

RESUMO

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor with multiple functions in mammals. However, the functions of MC4R in fish have not been investigated extensively. The purpose of this study was to determine potential regulation of reproduction by the MC4R. We cloned the black rockfish MC4R and analyzed its tissue distribution and function. The results showed that black rockfish mc4r cDNA consisted of 981 nucleotides encoding a protein of 326 amino acids. The quantitative PCR data showed that mc4r mRNA was primarily expressed in the brain, gonad, stomach and intestine. In the brain, mc4r was found to be primarily located in the hypothalamus. Both α-MSH and ß-MSH increased gnih expression and decreased sgnrh and cgnrh expression (P < 0.05). α-MSH and ß-MSH had opposite effects on kisspeptin expression. In contrast, α-MSH and ß-MSH increased the expression of cyp11, cyp19, 3ß-hsd and star. In summary, our study shows that MC4R in black rockfish might regulate reproductive function and that the effects of α-MSH and ß-MSH might differ.


Assuntos
Peixes/genética , Perciformes/genética , Receptor Tipo 4 de Melanocortina/genética , Reprodução/genética , Sequência de Aminoácidos/genética , Animais , Clonagem Molecular , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/crescimento & desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , alfa-MSH/genética , beta-MSH/genética
15.
J Ethnopharmacol ; 251: 112541, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31911179

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: various extracts of Moringa oleifera Lam. leaves, were reported to possess antiobesity effect in experimental animals models, yet its active doses and mechanism of action are still unclear. MATERIALS AND METHODS: The metabolic profiling of 70% ethanol extract of M. oleifera (MO) leaves was performed using HPLC-MS/MS analysis. The antiobesity activity of MO was tested in high fat diet induced obesity in rats at 200 and 400 mg/kg body weight orally for 1 month. Total cholesterol (TC), high density lipoproteins (HDL-C), low density lipoprotein-cholesterol (LDL-C), triglycerides (TGs), insulin resistance, insulin sensitivity, and adipose tissue index were monitored. In addition, fatty acid synthase (FAS) and HMG-CoA reductase mRNA from liver tissue, Peroxisome Proliferator-Activated Receptor alpha (PPARα) and Melanocortin-4 receptor (MC4R) RNA from adipose tissue were quantified using qRT-PCR. MO hard gelatin capsules (400 mg/capsule) were formulated and standardized using HPLC-RP analysis and tested on fifteen female participants, aged 45-55 with a BMI of 29-34 kg/m2. RESULTS: Thirteen metabolites were tentatively identified using HPLC-MS/MS analysis including flavonols, flavones and a phenolic acid. MO 400 showed a prominent effect on reducing the rats' final weights, % weight increase and adiposity index (P < 0.05). Glucose, insulin and HOMA-IR were significantly reduced and R-QUICKI was significantly increased by MO 400 (P < 0.001). Mean tissue level of leptin and vaspin were significantly reduced, adiponectin, omentin and GLUT-4 expression were increased significantly by MO 400 (P < 0.01). MO 400 significantly suppressed FAS and HMG-CoA reductase and increased mRNA expression of MC4R and PPAR-α (P < 0.01). Eight weeks administration of MO hard gelatin capsules to obese patients showed significant reduction of the average BMI, TC and LDL compared to the baseline values (p < 0.05). CONCLUSION: Our results presented a scientific evidence for the traditional use of M. oleifera leaves as antiobesity herbal medicine.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Moringa oleifera , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Colesterol/sangue , Dieta Hiperlipídica , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , PPAR alfa/genética , Fitoterapia , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos , Receptor Tipo 4 de Melanocortina/genética , Regulação para Cima
16.
Food Funct ; 10(9): 5752-5758, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31453624

RESUMO

Phloretin, abundantly present in apples, pears and other fruits, has been found to have antioxidant, immunosuppressive and anti-inflammatory activities. It has been reported that oral administration of phloretin dose-dependently increased feed intake in mice, but the mechanism is unclear yet. The aim of this study was to investigate the effect of dietary phloretin supplementation on the feed intake in C57BL/6J mice and to identify its mechanism. Here, sixty C57BL/6J mice (28-day age) were randomly chosen for four dietary treatments and fed a basal diet or a basal diet supplemented with 0.1%, 0.2%, and 0.3% phloretin, respectively, in a 6-week trial. We showed that mice in the 0.1%, 0.2%, and 0.3% phloretin-supplemented groups had increased accumulative feed intake compared with the control group. Furthermore, dietary phloretin supplementation significantly increased the ghrelin mRNA level in the stomach and hypothalamus, and decreased the cholecystokinin (CCK) mRNA level in the duodenum in a dose-dependent manner. The mRNA levels of neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin and melanocortin receptors 4 (MC4R), and pro-opiomelanocortin (POMC) in the hypothalamus were altered in response to dietary phloretin supplementation. Moreover, we confirmed that dietary phloretin supplementation reduced the expressions of miR-488 and miR-103, two feed intake-related miRNAs. Our present study provides evidence that dietary phloretin supplementation could increase feed intake in mice, which might be attributed to the stimulation of the hypothalamic feeding center via ghrelin, miRNAs (miR-103 and miR-488) and feeding signal factor-related genes (NPY, AgRP, MC4R and POMC), and to the inhibition of CCK to increase gastric emptying.


Assuntos
Suplementos Nutricionais/análise , Ingestão de Alimentos/efeitos dos fármacos , Floretina/administração & dosagem , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Expressão Gênica/efeitos dos fármacos , Grelina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
17.
Peptides ; 119: 170080, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260713

RESUMO

Nesfatin-1 is an anorexic peptide derived from nucleobindin 2 (NUCB2). An increase in hypothalamic nesfatin-1 inhibits feeding behavior and promotes weight loss. However, the effects of weight loss on hypothalamic nesfatin-1 levels are unclear. In this study, obese rats lost weight in three ways: Calorie Restriction diet (CRD), Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). We found an increase in nesfatin-1 serum and cerebrospinal fluid levels after weight loss in obese Sprague-Dawley (SD) rats. Moreover, weight loss also increased hypothalamic melanocortin 3/4 receptor (MC3/4R) and extracellular regulated kinase phosphorylation (p-ERK) signaling. Third ventricle administration of antisense morpholino oligonucleotide (MON) against the gene encoding NUCB2 inhibited hypothalamic nesfatin-1 and p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. Third ventricle administration of SHU9119 (MC3/4R blocker) blocked hypothalamic MC3/4R, inhibited p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. These findings indicate that weight loss leads to an increase in hypothalamic nesfatin-1. The increase in hypothalamic nesfatin-1 participates in regulating feeding behavior through the MC3/4R-ERK signaling especially after SG and RYGB.


Assuntos
Comportamento Alimentar , Hipotálamo/metabolismo , Sistema de Sinalização das MAP Quinases , Nucleobindinas/metabolismo , Obesidade/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Hipotálamo/patologia , Masculino , Morfolinos/genética , Morfolinos/farmacologia , Nucleobindinas/antagonistas & inibidores , Nucleobindinas/genética , Obesidade/genética , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética
18.
Stress ; 22(5): 571-580, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184537

RESUMO

The melanocortin-4 receptor (MC4R) facilitates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress in male rodents and is a well known to regulator of energy balance. Mutations in the MC4R is the most common monogenic cause of obesity in humans and has been associated with sex-specific effects, but whether stress regulation by the MC4R is sex-dependent, and whether the MC4R facilitates HPA responses to chronic stress, is unknown. We hypothesized that MC4R-signaling contributes to HPA axis dysregulation and metabolic pathophysiology following chronic stress exposure. We measured changes in energy balance, HPA axis tone, and vascular remodeling during chronic variable stress (CVS) in male and female rats with MC4R loss-of-function. Rats were placed into three groups (n = 9-18/genotype/sex) and half of each group was subjected to CVS for 30 days or were non-stressed littermate controls. All rats underwent an acute restraint stress challenge on Day 30. Rats were euthanized on Day 31, adrenals collected for weight, and descending aortas fixed for morphological indices of vascular pathophysiology. We observed a marked interaction between Mc4r genotype and sex for basal HPA axis tone and acute stress responsivity. MC4R loss-of-function blunted both endpoints in males but exaggerated them in females. Contrary to our hypothesis, Mc4r genotype had no effect on either HPA axis responses or metabolic responses to chronic stress. Heightened stress reactivity of females with MC4R mutations suggests a possible mechanism for the sex-dependent effects associated with this mutation in humans and highlights how stress may differentially regulate metabolism in males and females. Lay summary The hypothalamic melanocortin system is an important regulator of energy balance and stress responses. Here, we report a sex-difference in the stress reactivity of rats with a mutation in this system. Our findings highlight how stress may regulate metabolism differently in males and females and may provide insight into sex-differences associated with this mutation in humans.


Assuntos
Doenças Cardiovasculares/etiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Corticosterona/metabolismo , Feminino , Genótipo , Humanos , Hipotálamo/metabolismo , Masculino , Ratos , Restrição Física , Fatores Sexuais
19.
Mol Metab ; 20: 194-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503832

RESUMO

OBJECTIVE: Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation. METHODS: To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes. RESULTS: Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice. CONCLUSION: In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.


Assuntos
Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Epinefrina/metabolismo , Glucagon/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética
20.
Science ; 363(6424)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30545847

RESUMO

A wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in Sim1 and Mc4r heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the Sim1 promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in Sim1 heterozygous mice. To evaluate the therapeutic potential of CRISPRa, we injected CRISPRa-recombinant adeno-associated virus into the hypothalamus, which led to reversal of the obesity phenotype in Sim1 and Mc4r haploinsufficient mice. Our results suggest that endogenous gene up-regulation could be a potential strategy to treat altered gene dosage diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Haploinsuficiência , Obesidade/genética , Regiões Promotoras Genéticas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Dependovirus , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Heterozigoto , Hipotálamo , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/terapia , Fenótipo , Receptor Tipo 4 de Melanocortina/genética , Proteínas Repressoras/genética , Regulação para Cima , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA