Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9215, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654807

RESUMO

The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Animais , Ciclotídeos/química , Células HEK293 , Humanos , Ligantes , Camundongos , Extratos Vegetais , Receptor de Colecistocinina B , Sincalida
2.
Am J Physiol Endocrinol Metab ; 322(1): E10-E23, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779255

RESUMO

Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Colecistocinina/administração & dosagem , Ciclo-Oxigenase 2/metabolismo , Hipertermia/induzido quimicamente , Hipertermia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anorexia/induzido quimicamente , Benzodiazepinas/administração & dosagem , Regulação da Temperatura Corporal/efeitos dos fármacos , Colecistocinina/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Febre/induzido quimicamente , Febre/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/efeitos adversos , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptor de Colecistocinina B/antagonistas & inibidores , Resultado do Tratamento
3.
Dig Dis Sci ; 65(1): 189-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31297627

RESUMO

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis (NASH) is a common inflammatory liver condition that may lead to cirrhosis and hepatocellular carcinoma (HCC). Risk factors for NASH include a saturated fat diet, altered lipid metabolism, and genetic and epigenetic factors, including microRNAs. Serum levels of cholecystokinin (CCK) are elevated in mice and humans that consume a high-saturated fat diet. CCK receptors (CCK-Rs) have been reported on fibroblasts which when activated can induce fibrosis; however, their role in hepatic fibrosis remains unknown. We hypothesized that elevated levels of CCK acting on the CCK-Rs play a role in the development of NASH and in NASH-associated HCC. METHODS: We performed a NASH Prevention study and Reversal study in mice fed a saturated fat 75% choline-deficient-ethionine-supplemented (CDE) diet for 12 or 18 weeks. In each study, half of the mice received untreated drinking water, while the other half received water supplemented with the CCK-R antagonist proglumide. CCK-R expression was evaluated in mouse liver and murine HCC cells. RESULTS: CCK receptor antagonist treatment not only prevented NASH but also reversed hepatic inflammation, fibrosis, and steatosis and normalized hepatic transaminases after NASH was established. Thirty-five percent of the mice on the CDE diet developed HCC compared with none in the proglumide-treated group. We found that CCK-BR expression was markedly upregulated in mouse CDE liver and HCC cells compared with normal hepatic parenchymal cells, and this expression was epigenetically regulated by microRNA-148a. CONCLUSION: These results support the novel role of CCK receptors in the pathogenesis of NASH and HCC.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Antagonistas de Hormônios/farmacologia , Neoplasias Hepáticas/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proglumida/farmacologia , Receptor de Colecistocinina B/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Deficiência de Colina/complicações , Modelos Animais de Doenças , Epigênese Genética , Etionina , Feminino , Regulação Neoplásica da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais
4.
J Med Chem ; 61(22): 10173-10184, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30395477

RESUMO

In the search for an alternative strategy to the radioactivity measurement conventionally performed to probe receptor-ligand interactions in pharmacological assays, we demonstrated that selenium labeling of the studied ligand combined with elemental mass spectrometry was as efficient and robust as the reference method but devoid of its environmental and health hazards. The proof-of-concept was illustrated on two GPCR receptors, vasopressin (V1A) and cholecystokinin B (CCK-B), involving peptides as endogenous ligands. We proposed several methodologies to produce selenium-labeled ligands according to peptide sequences along with binding affinity constraints. A selection of selenopeptides that kept high affinities toward the targeted receptor were engaged in saturation and competitive binding experiments with subsequent sensitive RP-LC-ICP-MS measurements. Experimental values of affinity constant ( Ki) were perfectly correlated to literature data, illustrating the general great potency of replacing radioactive iodine by selenium for ligand labeling to further undergo unaffected pharmacology experiments efficiently monitored by elemental mass spectrometry.


Assuntos
Espectrometria de Massas , Selênio/química , Animais , Células CHO , Cricetulus , Marcação por Isótopo , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptor de Colecistocinina B/metabolismo , Vasopressinas/metabolismo
5.
J Endocrinol ; 230(2): 251-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325243

RESUMO

Epidemiological studies suggest an increased fracture risk in patients taking proton pump inhibitors (PPIs) for long term. The underlying mechanism, however, has been disputed. By binding to the gastric proton pump, PPIs inhibit gastric acid secretion. We have previously shown that proton pump (H(+)/K(+)ATPase beta subunit) KO mice exhibit reduced bone mineral density (BMD) and inferior bone strength compared with WT mice. Patients using PPIs as well as these KO mice exhibit gastric hypoacidity, and subsequently increased serum concentrations of the hormone gastrin. In this study, we wanted to examine whether inhibition of the gastrin/CCK2 receptor influences bone quality in these mice. KO and WT mice were given either the gastrin/CCK2 receptor antagonist netazepide dissolved in polyethylene glycol (PEG) or only PEG for 1year. We found significantly lower bone mineral content and BMD, as well as inferior bone microarchitecture in KO mice compared with WT. Biomechanical properties by three-point bending test also proved inferior in KO mice. KO mice receiving netazepide exhibited significantly higher cortical thickness, cortical area fraction, trabecular thickness and trabecular BMD by micro-CT compared with the control group. Three-point bending test also showed higher Young's modulus of elasticity in the netazepide KO group compared with control mice. In conclusion, we observed that the gastrin receptor antagonist netazepide slightly improved bone quality in this mouse model, suggesting that hypergastrinemia may contribute to deteriorated bone quality during acid inhibition.


Assuntos
Benzodiazepinonas/uso terapêutico , Osso e Ossos/efeitos dos fármacos , ATPase Trocadora de Hidrogênio-Potássio/deficiência , Osteoporose/prevenção & controle , Compostos de Fenilureia/uso terapêutico , Receptor de Colecistocinina B/antagonistas & inibidores , Absorciometria de Fóton , Proteínas Adaptadoras de Transdução de Sinal , Animais , Benzodiazepinonas/farmacologia , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Avaliação Pré-Clínica de Medicamentos , Feminino , Gastrinas/sangue , Glicoproteínas/sangue , ATPase Trocadora de Hidrogênio-Potássio/genética , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/sangue , Camundongos Endogâmicos BALB C , Camundongos Knockout , Osteocalcina/sangue , Osteoporose/induzido quimicamente , Compostos de Fenilureia/farmacologia , Inibidores da Bomba de Prótons/efeitos adversos , Ligante RANK/sangue , Estômago/efeitos dos fármacos , Microtomografia por Raio-X
6.
J Orthop Res ; 34(11): 1914-1921, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26945509

RESUMO

Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1914-1921, 2016.


Assuntos
Acloridria/complicações , Reabsorção Óssea/etiologia , Distúrbios do Metabolismo do Cálcio/fisiopatologia , Fraturas do Fêmur/complicações , Consolidação da Fratura , Animais , Cálcio/metabolismo , Cálcio/uso terapêutico , Distúrbios do Metabolismo do Cálcio/complicações , Suplementos Nutricionais , Feminino , Fraturas do Fêmur/metabolismo , Camundongos , Distribuição Aleatória , Receptor de Colecistocinina B/genética
7.
World J Gastroenterol ; 21(48): 13480-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26730159

RESUMO

AIM: To study the neural mechanism by which electroacupuncture (EA) at RN12 (Zhongwan) and BL21 (Weishu) regulates gastric motility. METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custom-made rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex (DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin (MTL) and gastrin (GAS) in the paraventricular hypothalamic nucleus (PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor (MTL-R) and gastrin receptor (GAS-R) in both the PVN and the gastric antrum were assayed by western blotting. RESULTS: EA at RN12 + BL21 (gastric Shu and Mu points), BL21 (gastric Back-Shu point), RN12 (gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC (2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos (36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL (22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS (24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R (1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R (1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R (1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R (1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure (13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway.


Assuntos
Pontos de Acupuntura , Eletroacupuntura/métodos , Esvaziamento Gástrico , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Solitário/fisiologia , Estômago/inervação , Nervo Vago/fisiologia , Potenciais de Ação , Animais , Gastrinas/metabolismo , Masculino , Mecanotransdução Celular , Motilina/metabolismo , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptor de Colecistocinina B/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Núcleo Solitário/metabolismo , Nervo Vago/metabolismo
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 44(6): 871-6, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24490492

RESUMO

OBJECTIVE: To observe the effects of Jiaweisini dispersion (JWSNS) on the ultrastructure of gastric mucosa, the content and gene expression of gastric antrum tissue gastrin receptor (GASR) and jejunal tissue vasoactive intestinal peptide receptor 2 (VIPR2) in chronic stress gastric ulcer rats, and to elucidate its mechanism. METHODS: 60 Wistar rats were randomly divided into normal group, model group, JWSNS large, medium, small dose groups, and omeprazole group, 10 rats in each group. Chronic stress method was used to establish the stress ulcer rat model. The every rat in JWSNS small, medium, large dose groups were gavaged with 0.25, 0.5, 1.0 g/ mL Chinese medicine Decoction on 2 mL respectively daily, rats in omeprazole group were gavaged with 0.3 mg/mL omeprazole solution on 2 mL daily, rats in normal group and model group were gavaged 2 mL NS daily. After modeling was end, transmission electron microscopy (TEM) was used to observe gastric mucosa cells and intercellular connections changes of ultrastructure of glandular stomach area and immunohistochemical method and Real time-PCR method were used to detect the protein content and gene expression changes of gastric antrum tissue GASR and jejunal tissue cell VIPR2. RESULTS: TEM observation demonstrated that in the normal group the gastric mucosa epithelial cells connected compact, cell membrane integrity, cell nuclear shape and size was normal; in model group rats the gastric mucosal cells were severely damaged; the rats in the rest treatment groups were better than those in the model group in different degree. After The treatment of JWSNS and omeprazole, the expression of GASR protein and mRNA in gastric antrum tissue were increased when compared with that of model group (P < 0.05), the expression of VIPR2 protein and mRNA in the jejunum tissue were lower than that of the model group (P < 0.05). The expression of GASR, VIPR2 protein and mRNA in the JWSNS large dose group was closed to the normal group with no significant difference (P > 0.05). And compared with omeprazole group and JWSNS small dose group, expression of GASR protein and mRNA in high dose group rats were increased (P < 0.05), and expression of VIPR2 protein and mRNA were decreased (P < 0.05). CONCLUSION: JWSNS can significantly improve microscopic pathologic morphology of the gastric mucosa cell in gastric ulcer of chronic stress rats models, and can through two aspects of inhibiting damage factor and enhancing defense factor to adjust the content and gene expression of gastric tissue GASR and jejunal tissue VIPR2.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Receptor de Colecistocinina B/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Úlcera Gástrica/metabolismo , Estresse Fisiológico , Animais , Mucosa Gástrica/metabolismo , Jejuno/metabolismo , Masculino , Ratos , Receptor de Colecistocinina B/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética
9.
J Biomol Screen ; 15(10): 1248-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20974902

RESUMO

G-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs. In this field, the use of radiolabeled ligands has remained so far the gold-standard method. Here the authors report a less hazardous alternative for high-throughput screening (HTS) applications by the setup of a nonradioactive fluorescence-based technology named Tag-lite(®). Selective binding of various fluorescent ligands, either peptidic or not, covering a large panel of GPCRs from different classes is illustrated, particularly for chemokine (CXCR4), opioid (δ, µ, and κ), and cholecystokinin (CCK1 and CCK2) receptors. Affinity constants of well-known pharmacological agents of numerous GPCRs are in line with values published in the literature. The authors clearly demonstrate that the Tag-lite binding assay format can be successfully and reproducibly applied by using different cellular materials such as transient or stable recombinant cells lines expressing SNAP-tagged GPCR. Such fluorescent-based binding assays can be performed with adherent cells or cells in suspension, in 96- or 384-well plates. Altogether, this new technology offers great advantages in terms of flexibility, rapidity, and user-friendliness; allows easy miniaturization; and makes it completely suitable for HTS applications.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cricetinae , Avaliação Pré-Clínica de Medicamentos/métodos , Fluorescência , Células HEK293 , Humanos , Ligantes , Receptor de Colecistocinina A/metabolismo , Receptor de Colecistocinina B/metabolismo , Receptores CXCR4/metabolismo , Receptores Opioides/metabolismo
10.
Biol Pharm Bull ; 33(2): 244-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20118547

RESUMO

Z-360, a novel cholecystokinin(2) (CCK(2)) receptor antagonist, has been developed as a therapeutic drug for pancreatic cancer and showed pain relief action in phase Ib/IIa clinical trial. This study was attempted to elucidate the analgesic efficacy of Z-360 in mice. Oral administration of Z-360 (30-300 mg/kg) showed a dose-dependent inhibitory effect on the late phase of nociceptive responses to formalin. YF476, another CCK(2) receptor antagonist, was without effects at 1 and 10 mg/kg. In contrast, the CCK(1) receptor antagonist devazepide inhibited the nociceptive responses to formalin. In a mouse model of cancer pain, significant anti-allodynic effect of Z-360 was observed after single and repeated oral administration of 100 and 300 mg/kg doses. Anti-allodynic effect was also observed after repeated administration of devazepide. Combined single treatment with morphine and Z-360 caused an increase inhibition of pain-related responses in the pain models produced by formalin and cancer. Although Z-360 has lower affinity for CCK(1) receptor than for CCK(2) receptor, Z-360 exhibited an inhibitory effect on sulfated CCK-8-induced gallbladder emptying, a CCK(1) receptor-mediated effect, at a dose of 100 mg/kg. These results suggest that Z-360 inhibits inflammatory and cancer pain probably through the blockade of CCK(1) receptors. Z-360 is expected to become a useful drug for the pancreatic cancer with analgesic effects as well as the prolongation of survival.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Benzodiazepinonas/farmacologia , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico , Dor/tratamento farmacológico , Receptor de Colecistocinina B/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Benzodiazepinonas/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Formaldeído/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neoplasias/complicações , Dor/induzido quimicamente , Dor/etiologia , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/fisiologia
11.
Curr Opin Endocrinol Diabetes Obes ; 17(1): 33-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19907321

RESUMO

PURPOSE OF REVIEW: Chronic infection of the gastric mucosa with Helicobacter pylori has long been recognized as a significant risk factor for gastric cancer, and indeed, this model represents the prototypical inflammation-associated cancer. In this review, we present the latest clinical and experimental evidence showing that gastrin peptides and their receptors [the cholecystokinin (CCK2) receptors] potentiate the progression of gastric cancer and other gastrointestinal malignancies in the presence of inflammation. RECENT FINDINGS: We highlight the feed-forward mechanisms by which gastrin and CCK2 receptor expression are upregulated during inflammation and in gastrointestinal cancers, summarize gastrin's proinflammatory role by inducing the production of cyclooxgenase-2 (COX-2) and interleukin-8 (IL-8), and relate evidence suggesting that gastrin and their receptors modulate the function of immune cells and fibroblasts following cellular stress, injury, repair, as well as during cancer progression. SUMMARY: We discuss trends for future studies directed toward the elucidation of gastrin peptides' role in regulating intercellular molecular signaling mechanisms between local and circulating immune cells, fibroblasts, epithelial cells, and other cell types in the microenvironments of inflammation-related cancers. Elucidation of the molecular and cellular pathways that relate inflammation with cancer may provide additional opportunities to develop complementary therapies that target the inflammatory microenvironment of the cancer.


Assuntos
Gastrinas/fisiologia , Gastrite/etiologia , Neoplasias Gastrointestinais/etiologia , Animais , Cocarcinogênese , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/fisiopatologia , Citocinas/fisiologia , Retroalimentação Fisiológica , Gastrite/complicações , Gastrite/fisiopatologia , Neoplasias Gastrointestinais/fisiopatologia , Infecções por Helicobacter/complicações , Helicobacter pylori , Humanos , Mediadores da Inflamação/fisiologia , Leucócitos/imunologia , Leucócitos/fisiologia , Receptor de Colecistocinina B/fisiologia
13.
J Med Chem ; 52(15): 4786-93, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19591486

RESUMO

Two cyclized minigastrin analogues for gastrin receptor scintigraphy were synthesized and derivatized with HYNIC at the N-terminus for labeling with 99mTc. Radiolabeling efficiency, stability, cell internalization, and receptor binding on CCK-2 receptor expressing AR42J cells were studied and the biodistribution evaluated in tumor bearing nude mice, including NanoSPECT/CT imaging. Metabolites in urine, liver, and kidneys were analyzed by radio-HPLC. Radiolabeled cyclic MG showed high stability in vitro and receptor mediated uptake in AR42J cells. In the animal tumor model, fast renal clearance and low nonspecific uptake in most organs were observed. A tumor uptake >3% was calculated ex vivo 1 h p.i. for both 99mTc-EDDA-HYNIC-cyclo-MG1 and 99mTc-EDDA-HYNIC-cyclo-MG2. In an imaging study with 99mTc-EDDA-HYNIC-cyclo-MG1, the tumor was clearly visualized. The metabolite analysis indicated rapid enzymatic degradation in vivo.


Assuntos
Gastrinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptor de Colecistocinina B/análise , Tecnécio , Sequência de Aminoácidos , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Gastrinas/farmacocinética , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Neoplasias Experimentais/metabolismo , Distribuição Tecidual
14.
Brain Res ; 1282: 10-9, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19497313

RESUMO

Layer 6b in neocortex is a distinct sublamina at the ventral portion of layer 6. Corticothalamic projections arise from 6b neurons, but few studies have examined the functional properties of these cells. In the present study we examined the actions of cholecystokinin (CCK) on layer 6b neocortical neurons using whole-cell patch clamp recording techniques. We found that the general CCK receptor agonist CCK8S (sulfated CCK octapeptide) strongly depolarized the neurons, and this action persisted in the presence of tetrodotoxin, suggesting a postsynaptic site of action. The excitatory actions of CCK8S were mimicked by the selective CCK(B) receptor agonist CCK4, and attenuated by the selective CCK(B) receptor antagonist L365260, indicating a role for CCK(B) receptors. Voltage-clamp recordings revealed that CCK8S produced a slow inward current associated with a decreased conductance with a reversal potential near the K(+) equilibrium potential. In addition, intracellular cesium also blocked the inward current, suggesting the involvement of a K(+) conductance, likely K(leak). Our data indicate that CCK, acting via CCK(B) receptors, produces a long-lasting excitation of layer 6b neocortical neurons, and this action may play a critical role in modulation of corticothalamic circuit activity.


Assuntos
Potenciais de Ação/fisiologia , Colecistocinina/metabolismo , Neurônios/metabolismo , Receptor de Colecistocinina B/metabolismo , Córtex Somatossensorial/metabolismo , Tálamo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Benzodiazepinonas/farmacologia , Colecistocinina/análogos & derivados , Colecistocinina/farmacologia , Vias Eferentes/citologia , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Compostos de Fenilureia/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Tetragastrina/farmacologia , Tálamo/citologia , Tálamo/efeitos dos fármacos
15.
Artigo em Inglês | WPRIM | ID: wpr-728749

RESUMO

The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdr1) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and micro-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.


Assuntos
Animais , Humanos , Camundongos , Ativinas , Encéfalo , Caspase 1 , Sistema Nervoso Central , Córtex Cerebral , Expressão Gênica , Proteínas de Ligação ao GTP , Hipotálamo , Análise em Microsséries , Negociação , Obesidade , Quinases Ativadas por p21 , Fenótipo , Receptor de Colecistocinina B , Retinaldeído , Fatores de Transcrição
16.
Regul Pept ; 146(1-3): 46-57, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17961733

RESUMO

BACKGROUND: Gastrin has a role in gastrointestinal (GI) malignancy. This study provides pre-clinical evaluation of a novel, orally-active gastrin/cholecystokinin-2 receptor (CCK-2R) antagonist, Z-360. METHODS: (125)I gastrin-17 (G17) displacement and G17-stimulated calcium assays were used in classical CCK-2R-transfected cell lines. Akt phosphorylation was assessed by Western blotting. Z-360 efficacy in vivo was evaluated in three human xenograft models, and microvessel density and apoptosis in these models were investigated by immunohistochemistry. RESULTS: Z-360 inhibited (125)I G17 binding to cells expressing CCK-2R, and G17-stimulated signalling. Reduced Akt phosphorylation in an oesophageal cell-line treated with Z-360 was reversed by co-treatment with G17. Z-360 increased survival in a gastric ascites model (p=0.011) and decreased tumour growth in a hepatic metastasis model (81%, p=0.02). In an orthotopic pancreatic model, Z-360 combined with gemcitabine decreased final tumour weight compared to single agents (84%, p=0.002) and there was increased apoptosis and decreased microvessel density in ex vivo tumour tissue. CONCLUSIONS: These results show that the orally-active CCK-2R antagonist, Z-360 has high sub-nM affinity for classical CCK-2R, is well tolerated in vivo and exerts an anti-tumour effect.


Assuntos
Benzodiazepinonas/química , Benzodiazepinonas/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Receptor de Colecistocinina B/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular
17.
Peptides ; 27(7): 1841-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16472889

RESUMO

The present study was performed to determine whether the expression levels of the hypothalamic cholecystokinin (CCK) and its receptors are associated with the responsiveness to high frequency electroacupuncture (EA) analgesia in rats. EA stimulation (100 Hz, 0.5 ms pulse width, 0.2-0.3 mA) was delivered to the Zusanli (ST36) acupoint of male Sprague-Dawley rats for 20 min without anesthetics or holder restraint. The analgesic effect of EA was quantified using a tail flick latency test, and subsequently animals were allocated to responder or non-responder groups. The hypothalamus of rats in each group was dissected and RNA was purified. The mRNA expressions of CCK, and CCK-A and -B receptor were determined by real-time RT-PCR. CCK mRNA levels were not significantly different in the two groups, whereas both CCK-A and -B receptors were significantly more expressed in non-responders. These results suggest that the level of CCK receptor mRNA expression in the hypothalamus, rather than CCK mRNA, has an important relationship with the individual variations to high frequency EA analgesia in rats.


Assuntos
Eletroacupuntura , RNA Mensageiro/metabolismo , Receptor de Colecistocinina A/química , Receptor de Colecistocinina B/química , Sincalida/química , Analgesia , Animais , Hipotálamo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sincalida/metabolismo
18.
J Pineal Res ; 39(3): 243-50, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16150104

RESUMO

Some data suggest that cholecystokinin (CCK) receptor agonists stimulate the growth of colon cancer. Melatonin, an endogenous indoleamine with strong antioxidant properties, displays antiproliferative and proapoptotic properties both in vivo or in vitro in several types of tumors. We used HT-29 human colon cancer cells, expressing CCK receptors, to test the antiproliferative effects of several antagonists of CCK-A and/or CCK-B and their possible synergism with melatonin. HT-29 cells were cultured in RPMI 1640 medium supplemented with fetal bovine serum at 37 degrees C. Cell proliferation was assessed by the incorporation of [3H]-thymidine into DNA. Annexin V-FITC plus propidium iodine were used for flow cytometry apoptosis/necrosis evaluation. The following drugs were tested: gastrin (CCK-B agonist); CCK-8s (CCK-A agonist); proglumide (CCK-A plus CCK-B antagonist); lorglumide (CCK-A antagonist); PD 135,158 (CCK-B antagonist and weak CCK-A agonist); devazepide or L 364,718 (CCK-A antagonist); L 365,260 (CCK-B antagonist), and melatonin. The results shown a lack of effects of gastrin on HT-29 cell proliferation, whereas CCK-8s induced proliferation at high doses. The order of the antiproliferative effect of the other drugs was devazepide > lorglumide > proglumide. These drugs produce cell death mainly inducing apoptosis. Melatonin showed strong antiproliferative effect at millimolar concentrations, and it induced apoptotic cell death. Melatonin generally enhanced the antiproliferative effects of devazepide, lorglumide and proglumide and increased the proglumide-induced apoptosis. These results suggest that melatonin and CCK-A antagonists are useful for controlling human colon cancer cell growth in culture and in combined therapy significantly increases their efficiency.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Melatonina/farmacologia , Receptor de Colecistocinina A/antagonistas & inibidores , Receptor de Colecistocinina B/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Devazepida/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Gastrinas/farmacologia , Células HT29 , Humanos , Proglumida/análogos & derivados , Proglumida/farmacologia , Receptor de Colecistocinina B/agonistas , Sincalida/análogos & derivados , Sincalida/farmacologia
19.
Regul Pept ; 129(1-3): 227-32, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15927720

RESUMO

Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.


Assuntos
Rim/metabolismo , Receptor de Colecistocinina B/biossíntese , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Rim/citologia , Ligantes , Preparações Farmacêuticas/metabolismo , Receptor de Colecistocinina B/antagonistas & inibidores , Fatores de Transcrição/genética , Transfecção , Regulação para Cima/genética , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
20.
J Biol Chem ; 280(23): 22198-204, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15817487

RESUMO

The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.


Assuntos
Polimorfismo Genético , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Humanos , Fosfatos de Inositol/química , Cinética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Neurônios/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Ratos , Receptor de Colecistocinina B/química , Especificidade da Espécie , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA