Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117836, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301985

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is an autoimmune disease characterized by dysfunctional T cells and dysregulated immune responses. Smilax glabra Roxb. (SGR) is a formulation used in Traditional Chinese Medicine for the treatment of inflammatory skin disorders, including psoriasis. This study explores the scientific basis for its use by examining the effects of SGR on T cell differentiation and insulin receptor signaling, relevant pathways implicated in the pathophysiology of psoriasis. AIM OF THE STUDY: This study investigates the therapeutic potential of SGR (a Chinese medicine) in psoriasis and its impact on T cell differentiation. MATERIALS AND METHODS: An integrated network pharmacology and bioinformatics approach was employed to elucidate the mechanisms of SGR in regulating T cell differentiation. A psoriasis mouse model was utilized to evaluate the effects of SGR on T cell subsets. Immunohistochemistry and gene expression analyses were conducted to investigate the modulation of insulin receptor signaling pathways by SGR. RESULTS: SGR treatment effectively reset the expression of various T cell subsets in the psoriasis mouse model, suggesting its ability to regulate T cell differentiation and immune function. Furthermore, SGR treatment inhibited insulin receptor signaling and downstream pathways, including PI3K/AKT and ERK, in psoriatic skin lesions. This indicates that SGR may exert its therapeutic effects through modulation of the insulin receptor signaling pathway. CONCLUSIONS: This study provides novel insights into the therapeutic potential of SGR in psoriasis. By modulating T cell differentiation and targeting the insulin receptor signaling pathway, SGR holds promise as a potential treatment option for psoriasis.


Assuntos
Dermatite , Psoríase , Smilax , Camundongos , Animais , Smilax/química , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina , Linfócitos T/metabolismo , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Inflamação/patologia , Imunidade , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
2.
Nutrition ; 120: 112333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271759

RESUMO

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Assuntos
Resistência à Insulina , Neuropeptídeos , Ratos , Animais , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Relacionada com Agouti/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , DNA Metiltransferase 3A , Ratos Sprague-Dawley , Obesidade/genética , Obesidade/metabolismo , Hiperfagia/complicações , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Superóxido Dismutase/metabolismo , Angiotensinas/metabolismo
3.
Br J Nutr ; 131(1): 27-40, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37492950

RESUMO

An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 ß (gs3kß) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Carpas/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Peixes/genética , Dieta/veterinária , Suplementos Nutricionais/análise , RNA Mensageiro/metabolismo , Carboidratos , Glucose , Ração Animal/análise , Imunidade Inata
4.
Zhen Ci Yan Jiu ; 48(8): 812-7, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37614140

RESUMO

OBJECTIVE: To observe the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on plasma melatonin (MLT) content and insulin receptor expression in the liver, the skeletal muscles, and the pancreas of Zucker diabetic fatty (ZDF) rats, so as to explore the hypoglycemic mechanism of taVNS. METHODS: Thirty male ZDF rats were randomly divided into model group, taVNS group and sham-taVNS group, with 10 rats in each group; besides, 10 male Zucker lean rats of the same strain were collected for the blank control group. ZDF rats were fed with high-fat diet to induce type 2 diabetes mellitus (T2DM) rat model. In the taVNS group, HANS-100A electroacupuncture instrument was used to stimulate the cavum conchae of both sides. The stimulation sites of rats in the sham-taVNS were the same as the taVNS group, but without electricity delivered. The above interventions were performed 30 min each time, once daily, lasting for 6 weeks. Fasting blood glucose (FBG) was measured weekly in each group, the plasma metatonin (MLT) content was detected by ELISA, and the insulin receptor expression level in the liver, the skeletal muscle and the pancreas was determined by Western blot. RESULTS: Compared with the blank control group, the level of FBG of rats were increased (P<0.01), the plasma MLT content was decreased (P<0.01) and the insulin receptor expression level in the pancreatic tissue was decreased (P<0.01) in the model group. In the taVNS gruop, FBG was decreased (P<0.05, P<0.01), the plasma MLT content was increased (P<0.01), and the insulin receptor expression level in the liver, the skeletal muscle and the pancreas was increased (P<0.05, P<0.01, P<0.001) when compared with the model group. Compared with the taVNS group, FBG was increased (P<0.05, P<0.01), the plasma MLT content was decreased (P<0.01), and the expression level of insulin receptors in the skeletal muscle and the pancreas was decreased (P<0.01, P<0.001) in the sham-taVNS group. CONCLUSION: The taVNS can improve the insulin resistance and ultimately obtain the antihyperglycemic effect through regulating MLT concentration.


Assuntos
Diabetes Mellitus Tipo 2 , Melatonina , Estimulação do Nervo Vago , Animais , Masculino , Ratos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Hipoglicemiantes , Ratos Zucker , Receptor de Insulina
5.
Front Endocrinol (Lausanne) ; 14: 1149239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056675

RESUMO

Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Humanos , Doença Crônica , Transdução de Sinais , Doenças Metabólicas/metabolismo , Receptor de Insulina/metabolismo
6.
J Pineal Res ; 75(1): e12869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37002642

RESUMO

Ever-increasing occurrence of plastic-manufacturing industries leads to environmental pollution that has been associated with declined human health and increased incidence of compromised reproductive health. Female subfertility/infertility is a complex phenomenon and environmental toxicants as well as lifestyle factors have a crucial role to play. Bisphenol S (BPS) was believed to be a "safer" replacement of bisphenol A (BPA) but recent data documented its neurotoxic, hepatotoxic, nephrotoxic, and reprotoxic attributes. Hence based on the scarcity of reports, we investigated molecular insights into BPS-induced ovarian dysfunction and protective actions of melatonin against it in adult golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin (3 mg/kg BW i.p. alternate days) and BPS (150 mg/kg BW orally every day) for 28 days. BPS treatment disrupted hypothalamo-pituitary-ovarian (HPO) axis as evident by reduced gonadotropins such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH), ovarian steroids such as estradiol (E2) and progesterone (P4), thyroid hormones namely triiodothyronine (T3) and thyroxine (T4) and melatonin levels along with their respective receptors (ERα, TRα, and MT-1) thereby reducing ovarian folliculogenesis. BPS exposure also led to ovarian oxidative stress/inflammation by increasing reactive oxygen species and metabolic disturbances. However, melatonin supplementation to BPS restored ovarian folliculogenesis/steroidogenesis as indicated by increased number of growing follicles/corpora lutea and E2/P4 levels. Further, melatonin also stimulated key redox/survival markers such as silent information regulator of transcript-1 (SIRT-1), forkhead box O-1 (FOXO-1), nuclear factor E2-related factor-2 (Nrf2), and phosphoinositide 3-kinase/protein kinase B (PI3K/pAkt) expressions along with enhanced ovarian antioxidant capacity. Moreover, melatonin treatment reduced inflammatory load including ovarian nuclear factor kappa-B (NFĸB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expressions, serum tumor necrosis factor α (TNFα), C-reactive protein (CRP) and nitrite-nitrate levels as well as upregulated ovarian insulin receptor (IR), glucose uptake transporter-4 (GLUT-4), connexin-43, and proliferating cell nuclear antigen (PCNA) expressions in ovary thereby ameliorating inflammatory and metabolic alterations due to BPS. In conclusion, we found severe deleterious impact of BPS on ovary while melatonin treatment protected ovarian physiology from these detrimental changes suggesting it to be a potential preemptive candidate against environmental toxicant-compromised female reproductive health.


Assuntos
Melatonina , Cricetinae , Animais , Humanos , Feminino , Mesocricetus , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases , Fator 2 Relacionado a NF-E2 , Receptor de Insulina , Estradiol
7.
Biol Trace Elem Res ; 201(11): 5169-5182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36826713

RESUMO

Increasing evidence suggests that organic vanadium compounds are bioavailable and safe therapeutic agents with insulin-mimetic and insulin-enhancing features. The objective of the current study was to examine the effect of vanadium-enriched yeast (VEY) supplementation on the gene expression level of insulin receptor substrates and clinical manifestations of obese type 2 diabetic mellitus (T2DM) patients. In this randomized, double-blind, placebo-controlled clinical trial, 44 obese T2DM patients were randomly allocated into either VEY (0.9 mg/day vanadium pentoxide) or placebo group for 12 weeks. The mRNA expression level of protein tyrosine phosphatase 1B (PTP1B), phosphatase and tensin homolog (PTEN), mitogen-activated protein kinase (MAPK), ribosomal protein S6 kinase (S6K), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB) genes in the peripheral blood mononuclear cells, serum levels of metabolic parameters, anthropometric indices, as well as the quality of life, and dietary intake were collected at pre- and post-intervention phases. Analysis of covariance was performed to obtain the corresponding effect size. Results showed that VEY administration significantly decreased anthropometric indices and glycemic parameters and increased insulin sensitivity after adjusting for potential covariates (p < 0.05), in comparison to the placebo group. Additionally, VEY supplementation was significantly effective on MAPK, PTP1B, and NFƘB gene expression level, compared to the placebo group. No significant changes were noticed for dietary intake, quality of life, and lipid profile in the VEY group, compared to the placebo group. Overall, VEY supplementation can be considered as a promising safe adjunct therapy for improving anthropometric indices and glycemic parameters in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fermento Seco , Humanos , Vanádio/farmacologia , Vanádio/uso terapêutico , Vanádio/metabolismo , Saccharomyces cerevisiae/metabolismo , Receptor de Insulina/metabolismo , Glicemia , Leucócitos Mononucleares/metabolismo , Qualidade de Vida , Insulina/metabolismo , Método Duplo-Cego , Suplementos Nutricionais
8.
J Nutr Biochem ; 111: 109179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223832

RESUMO

Epigallocatechin gallate (EGCG) has a wide consumption for its health advantages. The current study investigates the effects of prenatal EGCG administration on glucose metabolism and obesity in adulthood. Pregnant C57BL/6J mice were supplemented with EGCG in drinking water (3 µg/mL) for 16 d. Abdominal obesity was observed in both male and female adult mice, which was associated with the upregulation of adipose-specific genes, including C/ebpα and Srebf1 (Srebf1 only in males), and the downregulation of genes related to lipolysis, such as Acox1, Atgl and Pdk4 (only in males) in visceral adipose tissue. Elevated fasting glucose levels and hyperinsulinemia were observed in adult males, while females exhibit lower glucose level in glucose tolerance test, which might be due to reduced glucagon levels. Though hepatic expression of the insulin receptor signaling pathway was upregulated in males and was not altered in females, prenatal treatment with EGCG downregulated the expression of this signaling pathway in the skeletal muscle of adult mice, which was further demonstrated in primary human skeletal muscle cells treated with EGCG. The methylation levels in promotor of genes related to the insulin receptor signaling were matched with their transcription in mice, while the expression of acetylated histones was downregulated in human skeletal muscle cells. These results suggest that EGCG consumption during pregnancy should be a risk factor for the disruption of glucose homeostasis in adulthood.


Assuntos
Catequina , Obesidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Catequina/metabolismo , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Receptor de Insulina , Cultura Primária de Células , Humanos
9.
Molecules ; 29(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38202781

RESUMO

The development of drugs targeting gene products associated with insulin resistance holds the potential to enhance our understanding of type 2 diabetes mellitus (T2DM). The virtual screening, based on a three-dimensional (3D) protein structure, is a potential technique to accelerate the development of molecular target drugs. Among the targets implicated in insulin resistance, the genetic characterization and protein function of Grb14 have been clarified without contradiction. The Grb14 gene displays significant variations in T2DM, and its gene product is known to inhibit the function of the insulin receptor (IR) by directly binding to the tyrosine kinase domain. In the present study, a virtual screening, based on a 3D structure of the IR tyrosine kinase domain (IRß) in complex with part of Grb14, was conducted to find compounds that can disrupt the complex formation between Grb14 and IRß. First, ten compounds were selected from 154,118 compounds via hierarchical in silico structure-based drug screening, composed of grid docking-based and genetic algorithm-based programs. The experimental validations suggested that the one compound can affect the blood glucose level. The molecular dynamics simulations and co-immunoprecipitation analysis showed that the compound did not completely suppress the protein-protein interaction between Grb14 and IR, though competitively bound to IR with the tyrosine kinase pseudosubstrate region in Grb14.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Receptor de Insulina/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Proteínas Tirosina Quinases , RNA
10.
Acta Biochim Pol ; 69(3): 647-655, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877942

RESUMO

Appetite regulation in the hypothalamus is dependent on hormonal signals from the periphery, such as insulin and leptin, and can be modulated by both sugar-rich diet and stress. Our aim was to explore the effects of 9-week feeding with 20% fructose solution combined with 4-week chronic unpredictable stress, on appetite-regulating neuropeptides and modulatory role of leptin and insulin signalling in the hypothalamus of male Wistar rats. Energy intake, body mass and adiposity, as well as circulatory leptin and insulin concentrations were assessed. Hypothalamic insulin signalling was analysed at the level of glucose transporters, as well as at the protein level and phosphorylation of insulin receptor, insulin receptor supstrate-1, Akt and ERK. Phosphorylation of AMP-activated protein kinase (AMPK), level of protein tyrosine phosphatase 1B (PTP1B) and expression of leptin receptor (ObRb) and suppressor of cytokine signalling 3 (SOCS3) were also analysed, together with the expression of orexigenic agouti-related protein (AgRP) and anorexigenic proopiomelanocortin (POMC) neuropeptides. The results revealed that stress decreased body mass and adiposity, blood leptin level and expression of ObRb, SOCS3 and POMC, while combination with fructose diet led to marked increase of AgRP, associated with AMPK phosphorylation despite increased plasma insulin. Reduced Akt, enhanced ERK activity and elevated PTP1B were also observed in the hypothalamus of these animals. In conclusion, our results showed that joint effects of fructose diet and stress are more deleterious than the separate ones, since inappropriate appetite control in the hypothalamus may provide a setting for the disturbed energy homeostasis in the long run.


Assuntos
Neuropeptídeos , Pró-Opiomelanocortina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Citocinas/metabolismo , Dieta , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina , Leptina , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Fosforilação , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Receptores para Leptina/metabolismo
11.
Biol Trace Elem Res ; 200(8): 3545-3553, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666386

RESUMO

Several studies have demonstrated the participation of various minerals in mechanisms involving insulin. Magnesium, in particular, plays an important role in the secretion and action of this hormone. Therefore, this review aimed to examine the latest insights into the biochemical and molecular aspects of the participation of magnesium in insulin sensitivity. Magnesium plays a vital role in the activity of intracellular proteins involved in insulin secretion in ß-pancreatic cells, such as glucokinase, ATPase, and protein kinase C. In addition, evidence suggests that this mineral participates directly in insulin sensitivity and signaling in peripheral tissues, acting in the phosphorylation of the receptor tyrosine kinase and the insulin receptor substrates 1, insulin receptor substrates 2, phosphatidylinositol 3-kinase, and protein kinase B, and indirectly by reducing oxidative stress and chronic low-grade inflammation, which also lead to insulin resistance. Thus, magnesium deficiency is associated with glucose intolerance, while magnesium supplementation stimulates insulin secretion in pancreatic cells and improves insulin sensitivity in peripheral tissues. However, studies must consider assess short- and long-term nutritional status of mineral before performing intervention, the relevance of the balance of other nutrients that influence hormone secretion and sensibility, and health status of the assessed population.


Assuntos
Resistência à Insulina , Insulina , Magnésio , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Magnésio/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
12.
J Ethnopharmacol ; 296: 115477, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35764198

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: San-Huang-Tang (SHT), a traditional Chinese medicine (TCM) formula, has been clinically used to treat obesity and type 2 diabetes mellitus. Recently it has proved that SHT have a good effect on non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY: Our study was designed to investigate the therapeutic mechanisms of the SHT against NAFLD. The data of SHT were obtained through network pharmacology platform and validated experimentally in vivo and in vitro. MATERIALS AND METHODS: The candidate targets of SHT were predicted by network pharmacological analysis and crucial targets were chosen by the protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto encyclopedia of genes and Genomes (KEGG) were applied to analyze the NAFLD-related signaling pathways affected by SHT, and then the analysis results were verified with molecular biological experiments in vivo and in vitro. RESULTS: Molecules were screened with network pharmacological analysis, and then the improvement of insulin resistance of NAFLD mice was measured by IPITTs and IPGTTs. Through series of molecular experiments, it is revealed that SHT could increase the transcription of insulin receptor (INSR) and insulin receptor substrate (IRS1), and enhance the phosphorylation of both threonine protein kinase (AKT) and forkhead box O1 (FoxO1). CONCLUSIONS: Screened by bioinformatics and verified by experiments in vivo and in vitro, SHT could contribute to NAFLD by affecting insulin resistance via activating INSR/IRS1/AKT/FoxO1 pathway. Our research findings provide not only an experimental basis for the therapeutic effect of SHT but also a new target against NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Tipo 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina
13.
Nutrients ; 14(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406129

RESUMO

Vitamin D (VD) deficiency has been associated with cancer and diabetes. Insulin signaling through the insulin receptor (IR) stimulates cellular responses by activating the PI3K/AKT pathway. PTEN is a tumor suppressor and a negative regulator of the pathway. Its absence enhances insulin signaling leading to hypoglycemia, a dangerous complication found after insulin overdose. We analyzed the effect of VD signaling in a model of overactivation of the IR. We generated inducible double KO (DKO) mice for the VD receptor (VDR) and PTEN. DKO mice showed severe hypoglycemia, lower total cholesterol and increased mortality. No macroscopic tumors were detected. Analysis of the glucose metabolism did not show clear differences that would explain the increased mortality. Glucose supplementation, either systemically or directly into the brain, did not enhance DKO survival. Lipidic liver metabolism was altered as there was a delay in the activation of genes related to ß-oxidation and a decrease in lipogenesis in DKO mice. High-fat diet administration in DKO significantly improved its life span. Lack of vitamin D signaling increases mortality in a model of overactivation of the IR by impairing lipid metabolism. Clinically, these results reveal the importance of adequate Vitamin D levels in T1D patients.


Assuntos
Hipoglicemia , Resistência à Insulina , Deficiência de Vitamina D , Animais , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo , Vitaminas
14.
Biomed Pharmacother ; 149: 112838, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344738

RESUMO

Diabetes is a metabolic disease that is mainly characterized by hyperglycemia. The present work investigated the efficacy of the flavanones hesperetin (HES) and quercetin (Q) extracted from Trifolium alexandrinum (TA) to treat type 2 diabetic rats. Wistar albino rats were supplemented with a high fat diet (HFD) for 2 weeks and then administered streptozotocin to induce diabetes. Diabetic rats were orally treated with Q, HES, and TA extract at concentrations of 40, 50, and 200 mg/kg BW, respectively, for 4 weeks. Various biochemical, molecular, and histological analysis were performed to evaluate the antidiabetic effects of these treatments. Q, HES, and TA extract treatments all significantly improved diabetic rats' levels of serum glucose, insulin, glucagon, liver function enzymes, hepatic glycogen, α-amylase, lipase enzymes, lipid profiles, oxidative stress indicators, and antioxidant enzymes as compared with control diabetic untreated rats. In addition, supplementation with Q, HES, and TA extract attenuated the activities of glucose-6-phosphate; fructose-1,6-bisphospahate; 6-phosphogluconate dehydrogenase; glucose-6-phosphate dehydrogenase; glucokinase; and hexokinase in pancreatic tissue, and they improved the levels of glucose transporter 2 and glucose transporter 4. Furthermore, these treatments modulated the expressions levels of insulin receptor (IR), phosphoinositide 3-kinase (PI3K), AMP-activated protein kinase (AMPK), caspase-3, and interleukin-1ß (IL-1ß). Enhancement of the histological alterations in pancreatic tissues provided further evidence of the ability of Q, HES, and TA extract to exert antidiabetic effects. Q, HES, and TA extract remedied insulin resistance by altering the IR/PI3K and AMPK signaling pathways, and they attenuated type 2 diabetes by improving the antioxidant defense system.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Trifolium , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Metabolismo dos Carboidratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hesperidina , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Fígado , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Quercetina/farmacologia , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Estreptozocina/farmacologia , Trifolium/química , Trifolium/metabolismo
15.
Mol Nutr Food Res ; 66(9): e2100944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182109

RESUMO

SCOPE: T cell activation requires a metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to rapidly provide substrates for biosynthesis. An individual's zinc status plays an important role in balancing the activation of T cells and is required for a proper function of immune cells. Furthermore, zinc plays an important role during effector T cell polarization to T helper cell subsets or regulatory T cells, with effector T cells relying on glycolysis and regulatory T cells on oxidative phosphorylation. Therefore, the study aims to analyze if zinc also impacts on T cell activation on the level of intracellular metabolism. METHODS AND RESULTS: Mixed lymphocyte culture and anti-CD3/CD28 stimulation is used as in vitro models for T cell activation to investigate the effect of zinc supplementation and deprivation on metabolic switching. Promoted glucose uptake, insulin receptor expression, and signaling in both zinc conditions are observed, whereas key metabolic enzymes are stimulated mainly by zinc deprivation. Alterations in cytokine production suggest an immune-activating effect of zinc deprivation and a balancing effect of zinc supplementation. CONCLUSION: The results suggest a supportive effect of both zinc supplementation and deprivation on the metabolic switch during T cell activation, adding another level of immune regulation by zinc.


Assuntos
Glicólise , Receptor de Insulina , Glucose/metabolismo , Ativação Linfocitária , Receptor de Insulina/metabolismo , Zinco/farmacologia
16.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35066640

RESUMO

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Assuntos
Resistência à Insulina , Proteínas Tirosina Fosfatases , Receptor de Insulina , Chá , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Insulina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Chá/química
17.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919671

RESUMO

MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor ß subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.


Assuntos
Hipotálamo/metabolismo , Insulina/farmacologia , Metformina/farmacologia , MicroRNAs/genética , Receptor de Insulina/genética , Adulto , Animais , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , MicroRNAs/sangue , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/sangue , Obesidade/genética , Obesidade/metabolismo , Receptor de Insulina/metabolismo
18.
Nat Metab ; 3(12): 1662-1679, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931084

RESUMO

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteína Relacionada com Agouti/química , Animais , Biomarcadores , Barreira Hematoencefálica/metabolismo , Cálcio , Metabolismo Energético , Imunofluorescência , Grelina/metabolismo , Glucose/metabolismo , Resistência à Insulina , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Modelos Biológicos , Fragmentos de Peptídeos/metabolismo , Receptor de Insulina/metabolismo
19.
Molecules ; 26(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946771

RESUMO

Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Glucosídeos/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Ratos , Ratos Wistar
20.
Nutrients ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34836374

RESUMO

Epigallocatechin gallate (EGCG) and L-theanine (LTA) are important bioactive components in tea that have shown promising effects on nutrient metabolism. However, whether EGCG alone or combined with LTA can regulate the glucose, lipid, and protein metabolism of healthy rats remains unclear. Therefore, we treated healthy rats with EGCG or the combination of EGCG and LTA (EGCG+LTA) to investigate the effects of EGCG on nutrient metabolism and the role of LTA in the metabolism-regulatory effects of EGCG. The results showed that compared with the control group, EGCG activated insulin and AMP-activated protein kinase (AMPK) signals, thus regulating glucose, lipid, and protein metabolism. Compared with EGCG, EGCG+LTA enhanced hepatic and muscle glycogen levels and suppressed phosphorylation of AMPK, glycogen synthase 2, mammalian target of rapamycin, and ribosomal protein S6 kinase. In addition, EGCG+LTA inhibited the expression of liver kinase B1, insulin receptor and insulin receptor substrate, and promoted the phosphorylation level of acetyl-CoA carboxylase. Furthermore, both EGCG and EGCG+LTA were harmless for young rats. In conclusion, EGCG activated AMPK and insulin pathways, thereby promoting glycolysis, glycogen, and protein synthesis and inhibiting fatty acid (FA) and cholesterol synthesis. However, LTA cooperated with EGCG to promote glycogen metabolism and suppressed the effect EGCG on FA and protein synthesis via AMPK signals.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Glucose/metabolismo , Glutamatos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Catequina/farmacologia , Interações Medicamentosas , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculos/efeitos dos fármacos , Músculos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA