Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761958

RESUMO

Previous studies have shown that inhibition of TNF family member FN14 (gene: TNFRSF12A) in colon tumors decreases inflammatory cytokine expression and mitigates cancer-induced cachexia. However, the molecular mechanisms underlying the regulation of FN14 expression remain unclear. Tumor microenvironments are often devoid of nutrients and oxygen, yet how the cachexic response relates to the tumor microenvironment and, importantly, nutrient stress is unknown. Here, we looked at the connections between metabolic stress and FN14 expression. We found that TNFRSF12A expression was transcriptionally induced during glutamine deprivation in cancer cell lines. We also show that the downstream glutaminolysis metabolite, alpha-ketoglutarate (aKG), is sufficient to rescue glutamine-deprivation-promoted TNFRSF12A induction. As aKG is a co-factor for histone de-methylase, we looked at histone methylation and found that histone H3K4me3 at the Tnfrsf12a promoter is increased under glutamine-deprived conditions and rescued via DM-aKG supplementation. Finally, expression of Tnfrsf12a and cachexia-induced weight loss can be inhibited in vivo by DM-aKG in a mouse cancer cachexia model. These findings highlight a connection between metabolic stress and cancer cachexia development.


Assuntos
Caquexia , Neoplasias do Colo , Receptor de TWEAK , Animais , Camundongos , Caquexia/genética , Caquexia/prevenção & controle , Modelos Animais de Doenças , Glutamina/farmacologia , Código das Histonas , Histona Metiltransferases , Histonas/genética , Ácidos Cetoglutáricos/farmacologia , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral/metabolismo , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo
2.
J Leukoc Biol ; 108(2): 519-529, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32696503

RESUMO

Rheumatoid arthritis (RA) pathogenesis has been associated with dysregulation of long noncoding RNA (lncRNA) and microRNA (miRNA) expression in serum and in lesioned tissue. In this study, a microarray assay was performed to study the profile of lncRNAs in the serum of RA patients and healthy donors, and a set of novel lncRNAs associated with RA was identified. For the remainder of the study, focus is on the top hit, lncRNA uc.477. The upregulation of lncRNA uc.477 and downregulation of miR-19b were validated in the serum of RA patients compared to that of healthy donors, and similar results were further confirmed by quantitative real-time PCR analysis of a cell line: RA-derived human fibroblast-like synoviocytes (HFLS-RA). LncRNA uc.477 could interfere with the processing of pri-miR-19b to produce its mature form and thereby played a pro-inflammatory role. In addition, Huayu Qiangshen Tongbi formula (HQT), a traditional Chinese medicine (TCM), has been shown to exert a promising therapeutic effect on RA and to exhibit long-term safety in our previous clinical retrospective study. Importantly, HQT treatment normalized the levels of lncRNA uc.477 and miR-19b in HFLS-RA in vitro and in mouse models of collagen-induced arthritis. HQT treatment, knockdown of lncRNA uc.477, and overexpression of miR-19b resulted in a comparable inhibition of pro-inflammatory cytokine gene expression in HFLS-RA cells. Together, these data suggest that the therapeutic effects of HQT on RA are closely related to its modulation of lncRNA uc.477 and miR-19b.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/etiologia , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , MicroRNA Circulante , Modelos Animais de Doenças , Genes Reporter , Humanos , Camundongos , Receptor de TWEAK/genética
3.
Biochim Biophys Acta Gen Subj ; 1862(4): 895-906, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288771

RESUMO

BACKGROUND: Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic (Allium sativum), has established anti-oxidant and anti-inflammatory effects in various cell types. However, the impact of SAC on skeletal muscle pathology remains unexplored. Owing to the known anti-inflammatory properties of SAC, we investigated whether pre-treatment with SAC has a protective role in TNFα-induced atrophy in cultured myotubes. METHODS AND RESULTS: C2C12 myotubes were treated with TNFα (100ng/ml) in the presence or absence of SAC (0.01mM). TNFα treatment induced atrophy in myotubes by up-regulating various proteolytic systems i.e. cathepsin L, calpain, ubiquitin-proteasome E3-ligases (MuRF1/atrogin1), caspase 3 and autophagy (Beclin1/LC3B). TNFα also induced the activation of NFκB by stimulating the degradation of IκBα (inhibitor of NFκB), in myotubes. The alterations in proteolytic systems likely contribute to the degradation of muscle-specific proteins and reduce the myotube length, diameter and fusion index. The SAC supplementation significantly impedes TNFα-induced protein loss and protects myotube morphology by suppressing protein catabolic systems and endogenous level of inflammatory molecules namely TNFα, IL-6, IL-1ß, TNF-like weak inducer of apoptosis (TWEAK), fibroblast growth factor-inducible 14 (Fn14) and Nox. CONCLUSION AND GENERAL SIGNIFICANCE: Our findings reveal anti-atrophic role for SAC, as it prevents alterations in protein metabolism and protects myotubes by regulating the level of inflammatory molecules and multiple proteolytic systems responsible for muscle atrophy.


Assuntos
Cisteína/análogos & derivados , Mediadores da Inflamação/metabolismo , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Cisteína/farmacologia , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Proteólise/efeitos dos fármacos , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA