Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 215, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570836

RESUMO

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.


Assuntos
Microbioma Gastrointestinal , Miastenia Gravis , Humanos , Receptores Colinérgicos/metabolismo , Linfócitos T Reguladores , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Miastenia Gravis/metabolismo , Autoanticorpos/metabolismo
2.
J Neurosci ; 43(5): 722-735, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535767

RESUMO

The amygdalar anterior basolateral nucleus (BLa) plays a vital role in emotional behaviors. This region receives dense cholinergic projections from basal forebrain which are critical in regulating neuronal activity in BLa. Cholinergic signaling in BLa has also been shown to modulate afferent glutamatergic inputs to this region. However, these studies, which have used cholinergic agonists or prolonged optogenetic stimulation of cholinergic fibers, may not reflect the effect of physiological acetylcholine release in the BLa. To better understand these effects of acetylcholine, we have used electrophysiology and optogenetics in male and female mouse brain slices to examine cholinergic regulation of afferent BLa input from cortex and midline thalamic nuclei. Phasic ACh release evoked by single pulse stimulation of cholinergic terminals had a biphasic effect on transmission at cortical input, producing rapid nicotinic receptor-mediated facilitation followed by slower mAChR-mediated depression. In contrast, at this same input, sustained ACh elevation through application of the cholinesterase inhibitor physostigmine suppressed glutamatergic transmission through mAChRs only. This suppression was not observed at midline thalamic nuclei inputs to BLa. In agreement with this pathway specificity, the mAChR agonist, muscarine more potently suppressed transmission at inputs from prelimbic cortex than thalamus. Muscarinic inhibition at prelimbic cortex input required presynaptic M4 mAChRs, while at thalamic input it depended on M3 mAChR-mediated stimulation of retrograde endocannabinoid signaling. Muscarinic inhibition at both pathways was frequency-dependent, allowing only high-frequency activity to pass. These findings demonstrate complex cholinergic regulation of afferent input to BLa that is pathway-specific and frequency-dependent.SIGNIFICANCE STATEMENT Cholinergic modulation of the basolateral amygdala regulates formation of emotional memories, but the underlying mechanisms are not well understood. Here, we show, using mouse brain slices, that ACh differentially regulates afferent transmission to the BLa from cortex and midline thalamic nuclei. Fast, phasic ACh release from a single optical stimulation biphasically regulates glutamatergic transmission at cortical inputs through nicotinic and muscarinic receptors, suggesting that cholinergic neuromodulation can serve precise, computational roles in the BLa. In contrast, sustained ACh elevation regulates cortical input through muscarinic receptors only. This muscarinic regulation is pathway-specific with cortical input inhibited more strongly than midline thalamic nuclei input. Specific targeting of these cholinergic receptors may thus provide a therapeutic strategy to bias amygdalar processing and regulate emotional memory.


Assuntos
Acetilcolina , Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Masculino , Feminino , Acetilcolina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Receptores Colinérgicos/metabolismo , Tálamo/fisiologia , Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia
3.
Aging (Albany NY) ; 14(15): 6028-6046, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951355

RESUMO

Aging affects salivary gland function and alters saliva production and excretion. This study aimed to investigate whether ascorbic acid can be used to treat salivary gland dysfunction in an extensive aging mouse model of SAMP1/Klotho-/- mice. In our previous study, we found that ascorbic acid biosynthesis was disrupted in the salivary glands of SAMP1/Klotho (-/-) mice subjected to metabolomic profiling analysis. In SAMP1/Klotho -/- mice, daily supplementation with ascorbic acid (100 mg/kg for 18 days) significantly increased saliva secretion compared with the control. The expression of salivary gland functional markers (α-amylase, ZO-1, and Aqua5) is upregulated. Additionally, acetylcholine and/or beta-adrenergic receptors (M1AchR, M3AchR, and Adrb1) were increased by ascorbic acid in the salivary glands of aging mice, and treatment with ascorbic acid upregulated the expression of acetylcholine receptors through the DNA demethylation protein TET2. These results suggest that ascorbic acid could overcome the lack caused by dysfunction of ascorbic acid biosynthesis and induce the recovery of salivary gland function.


Assuntos
Acetilcolina , Dioxigenases , Envelhecimento/fisiologia , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Proteínas Klotho/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Receptores Colinérgicos/metabolismo , Glândulas Salivares/fisiologia
4.
Theranostics ; 11(14): 6644-6667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093845

RESUMO

Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aß) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aß, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aß accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aß plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aß plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aß plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Espectroscopia de Ressonância Magnética , Placa Amiloide/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Animais , Escala de Avaliação Comportamental , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Gliose/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Inflamação/metabolismo , Locomoção/genética , Locomoção/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Transgênicos , Receptores Colinérgicos/metabolismo , Tálamo/metabolismo , Tálamo/patologia
5.
J Ethnopharmacol ; 275: 114069, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794334

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Stress is a state of feeling that inhibits one from responding properly in the face of a threat. Agarwood smoke has been used in traditional medicine as a sedative anti-anxious, and anti-restless therapy. Its scent emitted from heat induces people to enter a stable state; however, the underlying molecular effect is still unclear. AIM OF THE STUDY: This study analyzed novel biological events and gene expression signatures induced by agarwood incense smoke in mice. MATERIALS AND METHODS: Incense smoke was produced by heating at 150 °C for 30 min in a headspace autosampler oven. We treated mice with exposure to incense smoke from Kynam agarwood for 45 min/day for 7 consecutive days. After a 7-day inhalation period, the potent agarwood smoke affected-indicators in serum were measured, and the RNA profiles of the mouse brains were analyzed by microarray to elucidate the biological events induced by agarwood incense smoke. RESULTS: Chemical profile analysis showed that the major component in the incense smoke of Kynam was 2-(2-phenylethyl) chromone (26.82%). Incense smoke from Kynam induced mice to enter a stable state and increased the levels of serotonin in sera. The emotion-related pathways, including dopaminergic synapse, serotonergic synapse, GABAergic synapse, long-term depression and neuroactive ligand-receptor interaction, were significantly affected by incense smoke. Moreover, the expression of Crhr2 and Chrnd genes, involved with neuroactive ligand-receptor interaction pathway, was upregulated by incense smoke. CONCLUSIONS: By a newly-established incense smoke exposure system, we first identified that anti-anxious and anti-depressant effects of agarwood incense smoke were likely associated with the increase of serotonin levels and multiple neuroactive pathways in mice.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Hipnóticos e Sedativos/farmacologia , Extratos Vegetais/farmacologia , Serotonina/metabolismo , Fumaça/análise , Madeira/química , Animais , Ansiolíticos/química , Ansiolíticos/uso terapêutico , Antidepressivos/química , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Emoções/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/uso terapêutico , Masculino , Medicina Tradicional , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Microvasc Res ; 131: 104030, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531353

RESUMO

Previous studies indicate that sex-related differences exist in the regulation of cutaneous vasodilation, however, the mechanisms remain unresolved. We assessed if sex-differences in young adults exist for cholinergic, nicotinic, and ß-adrenergic cutaneous vasodilation with a focus on nitric oxide synthase (NOS), cyclooxygenase (COX), and K+ channel mechanisms. In twelve young men and thirteen young women, four intradermal forearm skin sites were perfused with the following: 1) lactated Ringer's solution (control), 2) 10 mM Nω-nitro-l-arginine, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM BaCl2, a nonspecific K+ channel blocker. At all four sites, cutaneous vasodilation was induced by 1) 10 mM nicotine, a nicotinic receptor agonist, 2) 100 µM isoproterenol, a nonselective ß-adrenergic receptor agonist, and 3) 2 mM and 2000 mM acetylcholine, an acetylcholine receptor agonist. Nicotine and isoproterenol were administered for 3 min, whereas each acetylcholine dose was administered for 25 min. Regardless of treatment site, cutaneous vasodilation in response to nicotine and a high dose of acetylcholine (2000 mM) were lower in women than men. By contrast, isoproterenol induced cutaneous vasodilation was greater in women vs. men. Irrespective of sex, NOS inhibition or K+ channel blockade attenuated isoproterenol-mediated cutaneous vasodilation, whereas K+ channel blockade decreased nicotine-induced cutaneous vasodilation. Taken together, our findings indicate that while the mechanisms underlying cutaneous vasodilation are comparable between young men and women, sex-related differences in the magnitude of cutaneous vasodilation do exist and this response differs as a function of the receptor agonist.


Assuntos
Vasos Sanguíneos/enzimologia , Óxido Nítrico Sintase/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Colinérgicos/metabolismo , Pele/irrigação sanguínea , Vasodilatação , Agonistas Adrenérgicos beta/farmacologia , Adulto , Vasos Sanguíneos/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Antebraço , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores Sexuais , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Adulto Jovem
8.
Life Sci ; 250: 117585, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243928

RESUMO

AIMS: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been associated with risk factors for metabolic syndrome (MetS). Our objective was to evaluate the effect of nicotinamide (NAM) on the activities, expression and protein content of cholinesterases in a MetS model. MAIN METHODS: MetS was induced in male rats administrating 40% fructose to the drinking water for 16 weeks. Additionally, from 5th week onward, the carbohydrate solution was replaced by NAM, at several concentrations for 5 h each morning for the next 12 weeks. In the 15th week, the glucose tolerance test was conducted, and blood pressure was measured. After the treatment period had concluded, the biochemical profile; oxidant stress; proinflammatory markers; and the activity, quantity and expression of cholinesterases were evaluated, and molecular docking analysis was performed. KEY FINDINGS: The MetS group showed anthropometric, hemodynamic and biochemical alterations and increased cholinesterase activity, inflammation and stress markers. In the liver, cholinesterase activity and mRNA, free fatty acid, tumor necrosis factor-alpha (TNF-α), and thiobarbituric acid-reactive substance (TBARS) levels were increased, while reduced glutathione (GSH) levels were decreased. NAM partially or totally decreased risk factors for MetS, markers of stress and inflammation, and the activity (serum and liver) and expression (liver) of cholinesterases. Molecular docking analysis showed that NAM has a greater affinity for cholinesterases than acetylcholine (ACh), suggesting NAM as an inhibitor of cholinesterases. SIGNIFICANCE: Supplementation with 40% fructose induced MetS, which increased the activity and expression of cholinesterases, oxidative stress and the inflammation. NAM attenuated these MetS-induced alterations and changes in cholinesterases.


Assuntos
Inflamação/metabolismo , Síndrome Metabólica/tratamento farmacológico , Niacinamida/uso terapêutico , Estresse Oxidativo , Receptores Colinérgicos/metabolismo , Acetilcolinesterase/metabolismo , Animais , Antropometria , Anti-Inflamatórios/uso terapêutico , Arildialquilfosfatase/metabolismo , Butirilcolinesterase/metabolismo , Colinesterases/metabolismo , Frutose , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Hemodinâmica , Humanos , Peroxidação de Lipídeos , Fígado/enzimologia , Masculino , Síndrome Metabólica/induzido quimicamente , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley
9.
Theranostics ; 9(23): 7099-7107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660089

RESUMO

Complete re-innervation after a traumatic injury severing a muscle's peripheral nerve may take years. During this time, the denervated muscle atrophies and loses acetylcholine receptors, a vital component of the neuromuscular junction, limiting functional recovery. One common clinical treatment for atrophy is electrical stimulation; however, epimysial electrodes currently used are bulky and often fail due to an excessive inflammatory response. Additionally, there remains a need for a device providing in vivo monitoring of neuromuscular regeneration and the maintenance of acetylcholine receptors. Here, an implantable, flexible microelectrode array (MEA) was developed that provides surface neuromuscular stimulation and recording during long-term denervation. Methods: The MEA uses a flexible polyimide elastomer and an array of gold-based microelectrodes featuring Peano curve motifs, which together maintain electrode flexibility. The devices were implanted along the denervated gastrocnemius muscles of 5 rats. These rats underwent therapeutic stimulation using the MEA daily beginning on post-operative day 2. Another 5 rats underwent tibial nerve resection without implantation of MEA. Tissues were harvested on post-operative day 14 and evaluated for quantification of acetylcholine receptors and muscle fiber area using immunofluorescence and histological staining. Results: The Young's modulus was 1.67 GPa, which is comparable to native tendon and muscle. The devices successfully recorded electromyogram data when implanted in rats. When compared to untreated denervated muscles, MEA therapy attenuated atrophy by maintaining larger muscle fiber cross-sectional areas (p < 0.05). Furthermore, the acetylcholine receptor areas were markedly larger with MEA treatment (p < 0.05). Conclusions: This proof-of-concept work successfully demonstrates the ability to combine conformability, tensile strength-enhancing metal micropatterning, electrical stimulation and recording into a functional implant for both epimysial stimulation and recording.


Assuntos
Eletromiografia/métodos , Músculo Esquelético/inervação , Traumatismos dos Nervos Periféricos/terapia , Receptores Colinérgicos/metabolismo , Animais , Módulo de Elasticidade , Terapia por Estimulação Elétrica , Eletromiografia/instrumentação , Feminino , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Ratos Endogâmicos Lew
10.
Gene ; 689: 194-201, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30553998

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder causing common health problem with increasing age. Evidences show that the key symptoms of AD are mainly caused by cholinergic system dysfunction which has a role in cognitive disorders. Cholinergic pathways especially muscarinic receptors like M1 subtype also have a major role in learning, memory, cognitive functions and emotional state. There is no available permanent treatment currently to cure AD or to change its progression. This study was designed to investigate the factors that play important role in pathogenesis of AD and to compare the effects of Galantamine treatment with effects of Myrtus communis treatment. The expression level of M1, ACh, BDNF; AChE activity, GSH level, MDA and MPO activity and AChE gene expression were investigated in scopolamine-induced rat model. Results showed that, administration of MC significantly improves the SCOP-induced reduction of latency and object recognition time; increasing BDNF, M1 and ACh receptor expression levels in the different brain regions. Additionally, MC showed an increased in AChE by enhancing GSH activity and reducing MDA level and MPO activity. In conclusion MC considered as a possible novel therapeutic approach that can be a valuable alternative way in the prevention and treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Encéfalo/efeitos dos fármacos , Myrtus/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Receptores Colinérgicos/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Encéfalo/patologia , Citoproteção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Folhas de Planta/química , Ratos , Ratos Wistar , Escopolamina
11.
Inflammopharmacology ; 27(5): 961-968, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30196468

RESUMO

Achillea biebersteinii is a perennial aromatic herb that grows in the Mediterranean area. The leaves of this plant are used in foods as bittering and appetizing agents. In folk medicine, it is used for the treatment of stomachache and abdominal pain. In this study, the analgesic effect of A. biebersteinii methanolic flower extract was tested in three pain models, namely: writhing, tail-flick and paw-licking (formalin) tests. A. biebersteinii extract inhibited abdominal cramps produced by acetic acid. The effect of A. biebersteinii was better than that of 70 mg/kg indomethacin. In tail flick, A. biebersteinii extract increased latency at 30 min and was as effective as 100 mg/kg diclofenac sodium. In formalin test, A. biebersteinii extracts decreased paw-licking and flinching response in early and late phases. Atropine blocked the action of A. biebersteinii extract (300 mg/kg) in the late phase of formalin test as well as in writhing and tail-flick tests. GC-MS analysis revealed that ascaridole and iso-ascaridole were the main constituents of A. biebersteinii flower extract. In conclusion, this study shows for the first time that the antinociceptive effect of A. biebersteinii is mediated by the cholinergic receptor.


Assuntos
Achillea/química , Analgésicos/farmacologia , Flores/química , Dor/tratamento farmacológico , Dor/metabolismo , Extratos Vegetais/farmacologia , Receptores Colinérgicos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Metanol/química , Camundongos , Camundongos Endogâmicos BALB C , Medição da Dor/métodos , Fitoterapia/métodos , Folhas de Planta/química
12.
Sci Signal ; 11(561)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563865

RESUMO

Blood flow, blood clotting, angiogenesis, vascular permeability, and vascular remodeling are each controlled by a large number of variable, noisy, and interacting chemical inputs to the vascular endothelium. The endothelium processes the entirety of the chemical composition to which the cardiovascular system is exposed, carrying out sophisticated computations that determine physiological output. Processing this enormous quantity of information is a major challenge facing the endothelium. We analyzed the responses of hundreds of endothelial cells to carbachol (CCh) and adenosine triphosphate (ATP) and found that the endothelium segregates the responses to these two distinct components of the chemical environment into separate streams of complementary information that are processed in parallel. Sensitivities to CCh and ATP mapped to different clusters of cells, and each agonist generated distinct signal patterns. The distinct signals were features of agonist activation rather than properties of the cells themselves. When there was more than one stimulus present, the cells communicated and combined inputs to generate new distinct signals that were nonlinear combinations of the inputs. Our results demonstrate that the endothelium is a structured, collaborative sensory network that simplifies the complex environment using separate cell clusters that are sensitive to distinct aspects of the overall biochemical environment and interactively compute signals from diverse but interrelated chemical inputs. These features enable the endothelium to selectively process separate signals and perform multiple computations in an environment that is noisy and variable.


Assuntos
Cálcio/metabolismo , Artérias Carótidas/fisiologia , Comunicação Celular , Endotélio Vascular/fisiologia , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Artérias Carótidas/citologia , Células Cultivadas , Endotélio Vascular/citologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Biomed Pharmacother ; 108: 1731-1738, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372876

RESUMO

This study evaluated the effects of caffeine in combination with high-intensity interval training (HIIT) on sensitivity to glucocorticoids and proliferation of lymphocytes, IL-6 and IL-10 levels and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) activity in rat lymphocytes. The animals were divided into groups: control, caffeine 4 mg/kg, caffeine 8 mg/kg, HIIT, HIIT plus caffeine 4 mg/kg and HIIT plus caffeine 8 mg/kg. The rats were trained three times a week for 6 weeks for a total workload 23% of body weight at the end of the experiment. Caffeine was administered orally 30 min before the training session. When lymphocytes were stimulated with phytohaemagglutinin no changes were observed in proliferative response between trained and sedentary animals; however, when caffeine was associated with HIIT an increase in T lymphocyte proliferation and in the sensitivity of lymphocytes to glucocorticoids occurred. ATP and ADP hydrolysis was decreased in the lymphocytes of the animals only trained and caffeine treatment prevented alterations in ATP hydrolysis. HIIT caused an increase in the ADA and AChE activity in lymphocytes and this effect was more pronounced in rats trained and supplemented with caffeine. The level of IL-6 was increased while the level of IL-10 was decreased in trained animals (HIIT) and caffeine was capable of preventing this exercise effect. Our findings suggest that caffeine ingestion attenuates, as least in part, the immune and inflammatory alterations following a prolonged HIIT protocol.


Assuntos
Cafeína/farmacologia , Citocinas/metabolismo , Linfócitos/metabolismo , Condicionamento Físico Animal , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Acetilcolinesterase/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Glucocorticoides/farmacologia , Hidrólise , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Masculino , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
14.
Chin J Nat Med ; 16(6): 428-435, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30047464

RESUMO

Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg-1) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.


Assuntos
Artemisia , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Receptores Colinérgicos/metabolismo , Acetilcolinesterase/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Modelos Animais de Doenças , Etanol/química , Hipocampo/patologia , Hipocampo/fisiopatologia , Ataque Isquêmico Transitório/tratamento farmacológico , Masculino , Mecamilamina/farmacologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Fármacos Neuroprotetores/administração & dosagem , Fitoterapia , Componentes Aéreos da Planta/química , Extratos Vegetais/administração & dosagem
15.
Int J Mol Sci ; 19(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267212

RESUMO

Many Western drugs can give rise to serious side effects due to their ability to bind to acetylcholine receptors in the brain. This aggravates when they are combined, which is known as anticholinergic accumulation (AA). Some bioactives in Traditional Chinese Medicine (TCM) are known to block acetylcholine receptors and thus potentially cause AA. The AA of TCM was screened by quantifying the displacement of [³H] pirenzepine on acetylcholine receptors in a rat brain homogenate. We used a new unit to express AA, namely the Total Atropine Equivalents (TOAT). The TOAT of various herbs used in TCM was very diverse and even negative for some herbs. This is indicative for the broadness of the pallet of ingredients used in TCM. Three TCM formulas were screened for AA: Ma Huang Decotion (MHD), Antiasthma Simplified Herbal Medicine intervention (ASHMI), and Yu Ping Feng San (YPFS). The TOAT of ASHMI was indicative for an additive effect of herbs used in it. Nevertheless, it can be calculated that one dose of ASHMI is probably too low to cause AA. The TOAT of YPFS was practically zero. This points to a protective interaction of AA. Remarkably, MHD gave a negative TOAT, indicating that the binding to the acetylcholine receptors was increased, which also circumvents AA. In conclusion, our results indicate that TCM is not prone to give AA and support that there is an intricate interaction between the various bioactives in TCM to cure diseases with minimal side effects.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Antagonistas Muscarínicos/farmacologia , Receptores Colinérgicos/metabolismo , Animais , Atropina/química , Atropina/farmacologia , Cimetidina/química , Cimetidina/farmacologia , Medicamentos de Ervas Chinesas/química , Ephedra sinica/química , Humanos , Masculino , Antagonistas Muscarínicos/química , Pirenzepina/química , Ratos , Ratos Endogâmicos WKY , Risperidona/química , Risperidona/farmacologia , Teofilina/química , Teofilina/farmacologia
16.
Neurochem Res ; 42(12): 3573-3586, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993969

RESUMO

Decline in cognition is one of the earliest signs of normal brain aging. Several dietary and non-pharmacological approaches have been tested to slow down this process. The aim of the present study was to assess the influence of grape seed proanthocyanidin extract (GSPE) either individually or in combination with swimming training on acetylcholine esterase activity (AChE) and m1 acetylcholine receptor (m1AChR) on the extent of cognitive decline with aging. The experimental protocol included the oral administration of GSPE (400 mg/kg body weight) for 14 weeks to 4 (adult) and 18-month-old (middle-aged) male Wistar rats along with swimming training. They were subjected to behavioral testing followed by biochemical and immunohistochemical analysis. The results demonstrated that GSPE supplementation and swimming training either individually or in combination had an improvement on acquisition and working memory with reduced AChE activity in the medial prefrontal cortex (mPFC) and hippocampus (HC). Immunohistochemical and qRT-PCR evaluation showed an increase in m1AChR protein and mRNA in the CA1 region of HC and also mPFC upon swimming training with GSPE treatment. These beneficial and synergistic effects of GSPE and swimming training are suggestive as interventions in modulating the cognitive function, with GSPE alone being more suitable for middle-aged individuals.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Extrato de Sementes de Uva/farmacologia , Hipocampo/efeitos dos fármacos , Proantocianidinas/farmacologia , Receptores Colinérgicos/metabolismo , Animais , Antioxidantes/farmacologia , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Masculino , Condicionamento Físico Animal , Substâncias Protetoras/farmacologia , Ratos Wistar
17.
Eur J Neurosci ; 45(7): 987-997, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28199036

RESUMO

Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1ß) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease.


Assuntos
Antipirina/análogos & derivados , Disfunção Cognitiva/tratamento farmacológico , Sequestradores de Radicais Livres/uso terapêutico , Animais , Antipirina/administração & dosagem , Antipirina/farmacologia , Antipirina/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Colinesterases/metabolismo , Disfunção Cognitiva/etiologia , Citocinas/metabolismo , Edaravone , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto , Estresse Oxidativo , Ratos , Ratos Wistar , Tempo de Reação , Receptores Colinérgicos/metabolismo , Estreptozocina/toxicidade , Quinases Associadas a rho/metabolismo
18.
Acupunct Med ; 35(4): 268-275, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28069562

RESUMO

OBJECTIVE: To investigate the effects of electroacupuncture (EA) on mRNA and protein expression of agrin, acetylcholine receptor (AChR)-ε and AChR-γ in a rat model of tibialis anterior muscle atrophy induced by sciatic nerve injection injury, and to examine the underlying mechanism of action. METHODS: Fifty-four adult Sprague-Dawley rats were divided into four groups: healthy control group (CON, n=6); sciatic nerve injury group (SNI, n=24), comprising rats euthanased at 1, 2, 4 and 6 weeks, respectively, after penicillin injection-induced SNI (n=6 each); CON+EA group (n=12), comprising healthy rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA at GB30 and ST36); and SNI+EA group, comprising rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA). The sciatic nerve functional index (SFI), tibialis anterior muscle weight, muscle fibre cross-sectional area (CSA), and changes in agrin, AChR-ε, and AChR-γ expression levels were analysed. RESULTS: Compared with the control group (CON), SNI rats showed decreased SFI. The weight of the tibialis anterior muscle and muscle fibre CSA decreased initially and recovered slightly over time. mRNA/protein expression of agrin and AChR-ε were downregulated and AChR-γ expression was detectable (vs zero expression in the CON/CON+EA groups). There were no significant differences in CON+EA versus CON groups. However, the SNI+EA group exhibited significant improvements compared with the untreated SNI group (p<0.05). CONCLUSIONS: EA may alleviate tibialis anterior muscle atrophy induced by sciatic nerve injection injury by upregulating agrin and AChR-ε and downregulating AChR-γ.


Assuntos
Eletroacupuntura , Atrofia Muscular/terapia , Receptores Colinérgicos/genética , Receptores de Fatores de Crescimento/genética , Nervo Isquiático/lesões , Pontos de Acupuntura , Animais , Humanos , Masculino , Músculo Esquelético/fisiopatologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores Colinérgicos/metabolismo , Receptores de Fatores de Crescimento/metabolismo
19.
Nature ; 538(7624): 253-256, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27698417

RESUMO

Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.


Assuntos
Regulação do Apetite/fisiologia , Prosencéfalo Basal/citologia , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/metabolismo , Comportamento Alimentar/fisiologia , Resposta de Saciedade/fisiologia , Acetilcolina/metabolismo , Animais , Peso Corporal/fisiologia , Morte Celular , Colina O-Acetiltransferase/deficiência , Agonistas Colinérgicos , Neurônios Colinérgicos/patologia , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Feminino , Homeostase , Hiperfagia/enzimologia , Hiperfagia/genética , Hiperfagia/patologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Modelos Neurológicos , Nicotina/metabolismo , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Receptores Colinérgicos/metabolismo
20.
Drug Res (Stuttg) ; 66(5): 235-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26789652

RESUMO

BACKGROUND: We have previously reported antidepressant effect of Cnestis ferruginea (CF) in behavioral models of depression. Due to the promise shown by this extract, this study was carried out to investigate the contribution of monoaminergic, cholinergic and nitrergic systems to the antidepressant-like effect elicited by CF. METHODS: Male albino mice were pretreated with monoaminergic or cholinergic receptor antagonists, L-arginine or N(G)-nitro-L-arginine (nitric oxide synthase inhibitor) (at doses reported to block the in vivo effect of the agonists), 15 min before oral administration of CF (100 mg/kg), 1 h later, the forced swim test (FST) in mice was carried out. RESULTS: CF treatment produced significant changes in the duration of swimming (F(5,42)=9.86, P<0.001), climbing behaviour (F(5,42)=4.51, P=0.004) and mean time spent immobile (F(5,42)=11.55, P<0.001) vs. vehicle-treated control. Co-administration of CF with fluoxetine or imipramine potentiated their effect. However, pretreatment of mice with reserpine (F(1,16)=119.20, P<0.001), prazosin (F(1,16)=68.98, P<0.001), sulpiride (F(1,16)=15.46, P<0.01), RS 127445 ((F(1,20)=8.22, P<0.01), SB 399885 ((F(1,20)=38.44, P<0.001), atropine (F(1,16)=53.77, P<0.001), or L-arginine (nitric oxide precursor) (F(1,16)=10.35, P<0.01) prevented CF-induced antidepressant-like effect in mice. In addition, pretreatment of mice with L-NNA (10 mg/kg) augmented the effect of CF. CONCLUSION: C. ferruginea exerts its antidepressant-like action through interaction with α-adrenoceptor, dopamine D2, 5-HT2B, 5-HT6 and muscarinic cholinergi1c receptors as well as L-arginine-nitric oxide systems. C. ferruginea could be used as adjuvant with conventional antidepressants in the treatment of major depressive disorder.


Assuntos
Antidepressivos/farmacologia , Connaraceae/química , Depressão/tratamento farmacológico , Medicinas Tradicionais Africanas/métodos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/uso terapêutico , Arginina/metabolismo , Arginina/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Nigéria , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroarginina/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Colinérgicos/metabolismo , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA