Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631120

RESUMO

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Assuntos
Diferenciação Celular , Ferroptose , Células Caliciformes , Sobrecarga de Ferro , Estresse Oxidativo , Receptores Notch , Transdução de Sinais , Células-Tronco , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Células Caliciformes/metabolismo , Sobrecarga de Ferro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular/efeitos dos fármacos , Receptores Notch/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
2.
Cells Dev ; 177: 203908, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38403117

RESUMO

The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Alelos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1/genética , Receptores Notch/genética , Receptores Notch/metabolismo
3.
Cancer Biother Radiopharm ; 39(1): 19-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797218

RESUMO

It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.


Assuntos
Drosophila melanogaster , Neoplasias , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Receptores Notch/genética , Receptores Notch/metabolismo , Oncogenes
4.
J Nutr Biochem ; 123: 109483, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848105

RESUMO

The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.


Assuntos
Produtos Biológicos , Curcumina , Neoplasias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Transdução de Sinais , Receptores Notch/metabolismo
5.
Phytomedicine ; 108: 154524, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375238

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE: This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS: We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS: We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/ß-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS: This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Humanos , Compostos Fitoquímicos/uso terapêutico , Via de Sinalização Wnt , Apoptose , Receptores Notch/metabolismo , Neoplasias Colorretais/patologia
6.
Dev Cell ; 57(2): 260-276.e9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077680

RESUMO

Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Respiração Celular/fisiologia , Modelos Animais de Doenças , Drosophila , Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Elétrons , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/metabolismo , NAD/metabolismo , Células-Tronco Neoplásicas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
J Nutr Biochem ; 99: 108843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407449

RESUMO

Epigallocatechin-3-gallate (EGCG), the main active ingredient of green tea, exhibits low toxic side effect and versatile bioactivities, and its anti-cancer effect has been extensively studied. Most of the studies used cancer cell lines and xenograft models. However, whether EGCG can prevent tumor onset after cancer-associated mutations occur is still controversial. In the present study, Krt14-cre/ERT-Kras transgenic mice were developed and the expression of K-RasG12D was induced by tamoxifen. Two weeks after induction, the K-Ras mutant mice developed exophytic tumoral lesions on the lips and tongues, with significant activation of Notch signaling pathway. Administration of EGCG effectively delayed the time of appearance, decreased the size and weight of tumoral lesions, relieved heterotypic hyperplasia of tumoral lesions, and prolonged the life of the mice. The Notch signaling pathway was significantly inhibited by EGCG in the tumoral lesions. Furthermore, EGCG significantly induced cell apoptosis and inhibited the proliferation of tongue cancer cells by blocking the activation of Notch signaling pathway. Taken together, these results indicate EGCG as an effective chemotherapeutic agent for tongue cancer by targeting Notch pathway.


Assuntos
Antineoplásicos/administração & dosagem , Catequina/análogos & derivados , Neoplasias Labiais/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Receptores Notch/metabolismo , Neoplasias da Língua/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camellia sinensis/química , Catequina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Labiais/genética , Neoplasias Labiais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biomed Pharmacother ; 145: 112376, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749055

RESUMO

AIM: Doxorubicin/Cyclophosphamide (AC) is one of the standard adjuvant anthracycline-containing regimens that is still in use for breast cancer treatment. Cancer cell resistance and AC-induced side effects make treatment suboptimal and worsen patients' quality of life. This study aimed to improve trans-ferulic acid's (TFA) efficiency via loading into folate-receptor-targeted-poly lactic-co-glycolic acid nanoparticles (FA-PLGA-TFA NPs). Also, investigating both the antitumor efficacy of Doxorubicin (Dox)/FA-PLGA-TFA NPs combination against dimethylbenz[a]anthracene (DMBA)-induced breast cancer and its safety profile. METHODS: FA-PLGA-TFA NPs were optimally fabricated and characterized. Levels of Notch1, Hes1, Wnt-3a, ß-catenin, MMP-9, cyclin D1, Permeability-Glycoprotein (P-gp), ERα, PR, and HER2 were assessed as a measure of the antitumor efficacy of different treatment protocols. Histopathological examination of heart and bone, levels of ALT, AST, ALP, CK-MB, and WBCs count were evaluated to ensure the combination's safety profile. KEY FINDINGS: Dox/FA-PLGA-TFA NPs not only inhibited Notch signaling but also suppressed Notch synergy with Wnt, estrogen, progesterone, and HER2 pathways. Interestingly, Dox/FA-PLGA-TFA NPs decreased P-gp level and preserved heart, bone, and liver health as well as WBCs count. SIGNIFICANCE: Dox/FA-PLGA-TFA NPs reduced the side-effects of each single drug, and at the same time exerted excellent antitumor activity that surpass the AC regimen in evading cancer cell resistance and having a superior safety profile.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Nanopartículas , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/toxicidade , Ácidos Cumáricos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/toxicidade , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos , Feminino , Ácido Fólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Receptores Notch/metabolismo
9.
Life Sci ; 286: 120043, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637800

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide and mostly affects men. Around 20% of its incidence is by familiar disposition due to hereditary syndromes. The CRC treatment involves surgery and chemotherapy; however, the side effects of treatments and the fast emergence of drug resistance evidence the necessity to find more effective drugs. Curcumin is the main polyphenol pigment present in Curcuma longa, a plant widely used as healthy food with antioxidant properties. Curcumin has synergistic effects with antineoplastics such as 5-fluorouracil and oxaliplatin, as well anti-inflammatory drugs by inhibiting cyclooxygenase-2 and the Nuclear factor kappa B. Furthermore, curcumin shows anticancer properties by inhibition of the Wnt/ß-catenin, Hedgehog, Notch, and the phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways implicated in the progression of CRC. However, the consumption of pure curcumin is less suitable, as the absorption is poor, and the metabolism and excretion are high. Pharmacological formulations and essential oils of the plant improve the curcumin absorption, resulting in therapeutical dosages. Despite the evidence obtained in vitro and in vivo, clinical studies have not yet confirmed the therapeutic potential of curcumin against CRC. Here we reviewed the last scientific information that supports the consumption of curcumin as an adjuvant for CRC therapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Adjuvantes Farmacêuticos , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Neoplasias Colorretais/terapia , Curcuma/metabolismo , Curcumina/metabolismo , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismo
10.
Front Immunol ; 12: 715894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539648

RESUMO

Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.


Assuntos
Artrite/etiologia , Artrite/metabolismo , Fibroblastos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Animais , Artrite/patologia , Artrite/terapia , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Biomarcadores , Comunicação Celular/imunologia , Suscetibilidade a Doenças , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Macrófagos/patologia , Receptores Notch/metabolismo , Recidiva , Transdução de Sinais , Sinoviócitos/metabolismo , Sinoviócitos/patologia
11.
Tissue Cell ; 73: 101649, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583247

RESUMO

Various methods have been used to induce the neuronal differentiation of marrow mesenchymal stem cells (MSCs). However, the limited induction efficiency of cells in vitro has restricted their use. Therefore, identifying a simple and efficient treatment method is necessary. Dendrobium officinale is an important traditional Chinese medicine, and its main component, polysaccharides, has many pharmacological activities. However, the effects of D. officinale polysaccharide (DOP) on the neuronal differentiation of bone marrow mesenchymal stem cells (BMSCs) and treatment of ischaemic stroke remain unknown. We found that DOP promoted the neuronal differentiation of BMSCs by increasing the expression levels of neural markers, and the optimal concentration of DOP was 25 µg/mL. Additionally, the Notch signalling pathway was inhibited during the neuronal differentiation of BMSCs induced by DOP, and this effect was strengthened using an inhibitor of this pathway. The Wnt signalling pathway was activated during the differentiation of BMSCs, and inhibition of the Wnt signalling pathway downregulated the expression of neuronal genes. Furthermore, the transplantation of neuron-like cells induced by DOP improved neuronal recovery, as the brain infarct volume, neurologic severity scores and levels of inflammatory factors were all significantly reduced in vivo. In conclusion, DOP is an effective inducer of the neuronal differentiation of BMSCs and treatment option for ischaemic stroke.


Assuntos
Dendrobium/química , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Polissacarídeos/farmacologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Masculino , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Notch/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
12.
Biomed Res Int ; 2021: 8463161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337053

RESUMO

Meso-Xanthin (Meso-Xanthin F199™) is a highly active antiaging injection drug of the latest generation. The main acting compound is fucoxanthin, supplemented with several growth factors, vitamins, and hyaluronic acid. Previous examination of fucoxanthin on melanocytes showed its ability to inhibit skin pigmentation through different signaling pathways focused on suppression of melanogenic-stimulating receptors. In turn, the anticancer property of fucoxanthin is realized through MAPK and PI3K pathways. We aimed to evaluate the effect of fucoxanthin and supplemented growth factors on melanocyte growth and transformation at a proteomic level. The effect of fucoxanthin on melanocytes cultivated in three-dimensional (3D) condition was examined using high-throughput proteomic and system biology approaches to disclose key molecular events of the targeted action. Our results demonstrated significant inhibition of cell differentiation and ubiquitination processes. We found that the negative regulation of PSME1 and PTGIS largely determines the inhibition of NF-κB and MAPK2. Besides, fucoxanthin selectively inhibits cell differentiation via negative regulation of Raf signaling and the upstream activation of IL-1 signaling. It is assumed that inhibition of Raf influences the Notch-4 signaling and switches off the MAPK/MAPK2 cascade. Blockage of MAPK/MAPK2 is feasible due to suppression of Ras and NF-κB by the addressed action of IKKB, IKK2, and TRAF6. Suggestively, Meso-Xanthin F199™ can manage processes of proliferative activity and inhibition of apoptosis due to composition of fucoxanthin and growth-stimulating factors, which may increase the risk of skin cancer development under certain condition.


Assuntos
Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sistema de Sinalização das MAP Quinases , Melanócitos/citologia , Melanócitos/metabolismo , Receptores Notch/metabolismo , Xantina/farmacologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteoma/metabolismo
13.
Phytomedicine ; 90: 153640, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34330066

RESUMO

BACKGROUND: Diabetic neuropathic pain (DNP), a complication of diabetes, has serious impacts on human health. As the pathogenesis of DNP is very complex, clinical treatments for DNP is limited. Koumine (KM) is an active ingredient extracted from Gelsemium elegans Benth. that exerts an inhibitory effect on neuropathic pain (NP) in several animal models. PURPOSE: To clarify the anti-NP effect of KM on rats with DNP and the molecular mechanisms involving the Notch- Jκ recombination signal binding protein (RBP-Jκ) signaling pathway. METHODS: Male Sprague-Dawley rats were administered streptozocin (STZ) by intraperitoneal injection to induce DNP. The effect of KM on mechanical hyperalgesia in rats with DNP was evaluated using the Von Frey test. Microglial polarization in the spinal cord was examined using western blotting and quantitative real-time PCR. The Notch-RBP-Jκ signaling pathway was analysed using western blotting. RESULTS: KM attenuated DNP during the observation period. In addition, KM alleviated M1 microglial polarization in STZ-induced rats. Subsequent experiments revealed that Notch-RBP-Jκ signaling pathway was activated in the spinal cord of rats with DNP, and the activation of this pathways was decreased by KM. Additionally, KM-mediated analgesia and deactivation of the Notch-RBP-Jκ signaling pathway were inhibited by the Notch signaling agonist jagged 1, indicating that the anti-DNP effect of KM may be regulated by the Notch-RBP-Jκ signaling pathway. CONCLUSIONS: KM is a potentially desirable candidate treatment for DNP that may inhibit microglial M1 polarization through the Notch-RBP-Jκ signaling pathway.


Assuntos
Diabetes Mellitus , Alcaloides Indólicos/farmacologia , Microglia/efeitos dos fármacos , Neuralgia , Transdução de Sinais/efeitos dos fármacos , Animais , Polaridade Celular , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores Notch/metabolismo
14.
Oncol Rep ; 45(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33907837

RESUMO

The etiology for liver cancer has been clearly defined. Unfortunately, therapeutic approaches for liver cancer are rather limited, and liver cancer is insensitive to chemotherapy and radiotherapy. Traditional Chinese medicine (TCM) has become a promising strategy for cancer treatment as TCM elicits broad spectrum anticancer activity. In the present study, we evaluated the anticancer efficacy of AB4, an extract from the medical herb Pulsatilla chinensis (Bunge) Regel, in liver cancer in vitro and in vivo. We found that AB4 readily dose­ and time­dependently inhibited liver cancer HepG2 and Huh­7 cell proliferation and colony formation. Western blot and flow cytometry analyses suggested that AB4 treatment induced liver cancer cell apoptosis. Moreover, these findings could be readily recaptured in vivo, in which the AB4 regimen resulted in tumor suppression and cancer cell apoptosis in xenograft tumor­bearing nude mice. Importantly, we noted that treatment with a Notch signaling inhibitor DAPT produced very similar anticancer efficacy in both HepG2 and Huh­7 cell lines, and administration of DAPT also efficiently suppressed HepG2 xenograft outgrowth. To this end, we anticipated that AB4 and DAPT may act on the same signaling pathway, probably through inhibition of the Notch pathway. Indeed, we found decreased expression of Notch1 protein, as well as downstream targets Hes1 and Hey1, after AB4 treatment. Immunohistochemistry analysis further confirmed the suppression of Notch signaling in HepG2 xenograft­bearing mice. Taken together, our study highlighted the anticancer efficacy of AB4 in liver cancer. We also provided preliminary data showing Notch as a therapeutic target of AB4. It would be interesting to investigate the anticancer efficacy of AB4 in other types of cancer with elevated Notch activity.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Pulsatilla/química , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/uso terapêutico , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802299

RESUMO

Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta-Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.


Assuntos
Receptores Notch/metabolismo , Ácido Selenioso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selênio/metabolismo , Transcriptoma/efeitos dos fármacos
16.
Cell Biol Int ; 45(7): 1523-1532, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33724613

RESUMO

Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research. Radiation induces the loss of intestinal stem cells; hence, the protection of stem cells expressing LGR5 (a marker of intestinal epithelial stem cells) is a key strategy for the prevention of radiation-induced injury. In this study, we identified valproic acid (VPA) as a potent radioprotector using an intestinal organoid culture system. VPA treatment increased the number of LGR5+ stem cells and organoid regeneration after irradiation. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, an inhibitor of NOTCH signaling) blocked the radioprotective effects of VPA, indicating that NOTCH signaling is a likely mechanism underlying the observed effects of VPA. In addition, VPA acted as a radiosensitizer via the inhibition of histone deacetylase (HDAC) in a colorectal cancer organoid. These results demonstrate that VPA exerts strong protective effects on LGR5+ stem cells via NOTCH signaling and that the inhibition of NOTCH signaling reduces these protective effects, providing a basis for the improved management of radiation injury.


Assuntos
Neoplasias/radioterapia , Organoides/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Lesões por Radiação/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo
17.
Biomed Res Int ; 2021: 8875503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628824

RESUMO

In order to explore the specific mechanism of YiqiChutan formula (YQCTF) in inhibiting the angiogenesis of lung cancer and its relationship with delta-like ligand 4- (DLL4-) Notch signaling, 30 healthy BALB/c-nu/nu rats were selected and divided into three groups: A549 group (implanted with lung adenocarcinoma cell line A549), NCI-H460 group (implanted with human lung large-cell carcinoma cell line NCI-H460), and NCI-H446 group (implanted with human lung small cell carcinoma cell line NCI-H446) for constructing lung cancer transplanted tumor models. After modeling, the group treated with normal saline was taken as control group, 200 mg/kg of YQCTF was adopted for intervention, and the tumor volume and growth inhibition rate were compared with the vascular targeted inhibitor Sorafenib. HE staining, CD31 fluorescent antibody staining, and microelectron microscopy were adopted to observe the neovascular endothelial cells of the transplanted tumor. The expression of VEGF, HIF-1α, DLL4, and Notch-1 in the transplanted tumors in each group was detected by Western blot and RT-PCR at the protein level or mRNA level. Compared with the control group, the YQCTF-treated group had obvious inhibitory effect on lung cancer transplanted tumor and lung cancer angiogenesis. In the YQCTF-treated group, the density of angiogenesis decreased significantly and the vascular lumen structure also decreased, and the expression levels of VEGF, HIF-1α, DLL4, and Notch-1 in the YQCTF-treated group were all lower than those in the control group. YQCTF could inhibit the growth of lung cancer transplanted tumor through antiangiogenesis, and it could also reduce the amount of angiogenesis in lung cancer transplanted tumor. In addition, the generation of lumen structure was also hindered, which was realized through the VEGF signaling pathway and DLL4-Notch signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma de Pulmão , Proteínas de Ligação ao Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/irrigação sanguínea , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Chin Med ; 49(1): 217-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33371813

RESUMO

Invasion and metastasis are the major causes leading to the high mortality of colon cancer. Ginsenoside Rg3 (Rg3), as a bioactive ginseng compound, is suggested to possess antimetastasis effects in colon cancer. However, the underlying molecular mechanisms remain unclear. In this study, we reported that Rg3 could effectively inhibit colon cancer cell invasion and metastasis through in vivo and in vitro studies. In addition, Rg3 suppressed the epithelial-mesenchymal transition (EMT) of HCT15 cells and SW48 cells evidenced by detecting EMT related markers E-cadherin, vimentin, and snail expression. Furthermore, inhibition of Notch signaling by LY411,575 or specific Hes1 siRNA obviously repressed colon cancer cell migration and metastasis, and induced increase in E-cadherin and decrease in vimentin and snail. Meanwhile, the expression of NICD and Hes1 was obviously decreased in the presence of Rg3. However, Rg3 failed to suppress EMT in Hes1 overexpressed colon cancer cells. In particular, Rg3 significantly reversed IL-6-induced EMT promotion and blocked IL-6- induced NICD and Hes1 upregulations. Overall, these findings suggested that Rg3 could inhibit colon cancer migration and metastasis via suppressing Notch-Hes1-EMT signaling.


Assuntos
Antineoplásicos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Ginsenosídeos/farmacologia , Metástase Neoplásica/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição HES-1/metabolismo , Animais , Humanos , Interleucina-6/antagonistas & inibidores , Masculino , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas
19.
Phytomedicine ; 81: 153424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278782

RESUMO

BACKGROUD: Exposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions. PURPOSE: We investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function. METHODS: To investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis. RESULTS: In this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model. CONCLUSION: These data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.


Assuntos
Grelina/farmacologia , Enteropatias/tratamento farmacológico , Mucosa Intestinal/citologia , Receptores Notch/metabolismo , Células-Tronco/efeitos da radiação , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Enteropatias/etiologia , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Lesões por Radiação , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/efeitos da radiação
20.
J Drug Target ; 29(5): 507-519, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33307848

RESUMO

The Wnt and Notch signalling pathways are important for maintenance of intestinal epithelial barrier integrity by intestinal stem cells (ISCs). Dysfunction of these pathways is implicated in inflammatory bowel disease (IBD) and colon cancer. The objective of this review is to summarise advancements of drugs that regulate Wnt and Notch in the treatment of IBD and colon cancer. The compositions and biological effects of Wnt and Notch modulators in both ISCs and non-ISCs are discussed. The drugs, including phytochemicals, plant extracts, probiotics and synthetic compounds, have been found to regulate Wnt and Notch signalling pathways by targeting regulatory factors (including secreted frizzled-related proteins or pathway proteins such as ß-catenin and γ-secretase) to alleviate IBD and colon cancer. This review highlights the potential for targeting Wnt and Notch pathways to treat IBD and colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Doenças Inflamatórias Intestinais/metabolismo , Receptores Notch/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Neoplasias do Colo/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Extratos Vegetais/administração & dosagem , Probióticos/administração & dosagem , Resultado do Tratamento , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA