Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res Bull ; 204: 110800, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913850

RESUMO

Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.


Assuntos
Neuralgia , Receptores Purinérgicos P2 , Humanos , Medicina Tradicional Chinesa , Receptores Purinérgicos P2/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores Purinérgicos , Transdução de Sinais
3.
Am J Chin Med ; 49(3): 645-659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33641652

RESUMO

Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.


Assuntos
Terapia por Acupuntura , Purinas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Analgesia por Acupuntura , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Hidrólise , Mastócitos/metabolismo , Neuroimunomodulação , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Regulação para Cima
4.
Fitoterapia ; 146: 104709, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32829014

RESUMO

In recent years, interest in the research of P2 receptor (P2R)-mediated responses has grown significantly due to the recognition of the involvement of these receptors in various physiological and pathological processes. Despite all the progress made in the functional characterization of P2Rs, purinergic signaling research is still limited by the lack of selective or efficient ligands for different receptor subtypes. In this sense, several molecules have been tested towards these receptors as agonists or antagonists. Historically, natural products have always been sources of new bioactive substances for diverse purposes. However, compared to synthetic molecules, the number of natural products assessed for P2R ligands is still low. In this review, we present examples of studies that demonstrated plant natural products acting directly on P2R and modulating their functionality. In some cases, we highlight that the pharmacological activity previously described for the original organism could be correlated to an agonist or antagonist activity of a specific natural product on these receptors. These examples reinforce the need for more studies to investigate the pharmacological potential of new or known natural compounds targeting P2 receptors.


Assuntos
Compostos Fitoquímicos/farmacologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Produtos Biológicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Ligantes , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia
5.
Phytomedicine ; 64: 152899, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454649

RESUMO

BACKGROUND: P2Y12 receptor (P2Y12R) is a newly discovered Gi-coupled ADP receptor that plays critical role in platelet function. Ginsenosides are the main constituents responsible for most of pharmacological actions of ginseng, especially cardio-cerebrovascular protective efficacy that is closely related to the influence on platelet function. HYPOTHESIS/PURPOSE: To explore stereoselective effect of naturally abundant ginsenoside isomers, including the C-20 epimers of protopanaxadiol (PPD), protopanaxatriol (PPT), and their glycosides Rg2, Rg3, Rh1, Rh2 on P2Y12R in platelets. STUDY DESIGN/METHODS: Both in vitro assay and in silico molecular docking study were performed to investigate the stereoselective effects. RESULTS: In vitro assay using washed rat platelets revealed differential effects of ginsenoside isomers on ADP-induced platelet aggregation with the direction and degree of action varying with chemical structures. More to the point, the ginsenoside 20S-Rh2 but not its 20R-epimer was found to be the only one that could significantly promote in vitro platelets aggregation induced by ADP. The correlation analysis demonstrated that ginsenosides may have impact on P2Y12R related platelet functions through a cAMP-dependent pathway. Molecular docking stimulation further indicated that ginsenoside isomers could be potent substrate of P2Y12R with differential protein-ligand interaction that would be responsible for the stereoselective efficacy of C-20 ginsenoside epimers. Hydrogen bonding with Asp266 via the C-20 hydroxyl may provide ginsenosides with promoting effect on ADP-induced platelets aggregation, whereas interactions with Tyr105 could contribute to the promotion of inhibitory efficacy. CONCLUSION: Ginsenosides are potent P2Y12R substrate with stereoselective effects on P2Y12R-related platelet function, which result from their chemical diversity and are closely related to the different interaction ways as P2Y12R ligand.


Assuntos
Fibrinolíticos/farmacologia , Ginsenosídeos/farmacologia , Glicosídeos/farmacologia , Panax/química , Receptores Purinérgicos P2/metabolismo , Sapogeninas/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Fibrinolíticos/química , Ginsenosídeos/química , Glicosídeos/química , Humanos , Masculino , Simulação de Acoplamento Molecular , Plantas Medicinais , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12 , Sapogeninas/química , Estereoisomerismo
6.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909368

RESUMO

BACKGROUND: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. METHODS: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. RESULTS: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. CONCLUSIONS: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenosina/metabolismo , Apoptose/genética , Biomarcadores , Espaço Extracelular/metabolismo , Expressão Gênica , Humanos , Hipóxia/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P2/genética , Transdução de Sinais , Estresse Fisiológico/genética
7.
Brain Res Bull ; 151: 125-131, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30599217

RESUMO

Neuropathic pain is generally resistant to currently available treatments, and it is often a consequence of nerve injury due to surgery, diabetes or infection. Myocardial ischemic nociceptive signaling increases the sympathoexcitatory reflex to aggravate myocardial injury. Elucidation of the pathogenetic factors might provide a target for optimal treatment. Abundant evidence in the literature suggests that P2X and P2Y receptors play important roles in signal transmission. Traditional Chinese medicines, such as emodin, puerarin and resveratrol, antagonize nociceptive transmission mediated by purinergic 2 (P2) receptors in primary afferent neurons. This review summarizes recently published data on P2 receptor-mediated neuropathic pain and myocardial ischemia in dorsal root ganglia (DRG), superior cervical ganglia (SCG) and stellate ganglia (SG), with a special focus on the beneficial role of natural compounds.


Assuntos
Neuralgia/terapia , Receptores Purinérgicos P2/metabolismo , Animais , Modelos Animais de Doenças , Gânglios Espinais/patologia , Humanos , Medicina Tradicional Chinesa/métodos , Isquemia Miocárdica/tratamento farmacológico , Neuralgia/metabolismo , Neurônios/fisiologia , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X/efeitos dos fármacos , Receptores Purinérgicos P2Y/efeitos dos fármacos , Reflexo/fisiologia , Transdução de Sinais/fisiologia , Gânglio Cervical Superior/patologia
8.
J Med Food ; 22(2): 211-224, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30526214

RESUMO

P2Y2 and P2Y4 receptors are physiologically activated by uridine 5'-triphosphate (UTP) and are widely expressed in many cell types in humans. P2Y2 plays an important role in inflammation and proliferation of tumor cells, which could be attenuated with the use of antagonists. However, little is known about the physiological functions related to P2Y4, due to the lack of selective ligands for these receptors. This can be solved through the search for novel compounds with antagonistic activity. The aim of this study was to discover new potential antagonist candidates for P2Y2 and P2Y4 receptors from natural products. We applied a calcium measurement methodology to identify new antagonist candidates for these receptors. First, we established optimal conditions for the calcium assay using J774.G8, a murine macrophage cell line, which expresses functional P2Y2 and P2Y4 receptors and then, we performed the screening of plant extracts at a cutoff concentration of 50 µg/mL. ATP and ionomycin, known intracellular calcium inductors, were used to stimulate cells. The calculated EC50 were 11 µM and 103 nM, respectively. These cells also responded to the UTP stimulation with an EC50 of 1.021 µM. Screening assays were performed and a total of 100 extracts from Brazilian plants were tested. Joannesia princeps Vell. (stem) and Peixotoa A. Juss (flower and leaf) extracts stood out due to their ability to inhibit UTP-induced responses without causing cytotoxicity, and presented an IC50 of 32.32, 14.99, and 12.98 µg/mL, respectively. Collectively, our results point to the discovery of potential antagonist candidates from Brazilian flora for UTP-activated receptors.


Assuntos
Magnoliopsida , Extratos Vegetais/farmacologia , Plantas/química , Receptores Purinérgicos P2/metabolismo , Uridina Trifosfato/farmacologia , Trifosfato de Adenosina , Animais , Brasil , Cálcio/metabolismo , Flores , Concentração Inibidora 50 , Ionomicina , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Folhas de Planta , Uridina
9.
Food Chem Toxicol ; 123: 298-313, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30291944

RESUMO

Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.


Assuntos
Cafeína/metabolismo , Ácido Clorogênico/metabolismo , Extratos Vegetais/metabolismo , Purinas/metabolismo , Animais , Cafeína/química , Ácido Clorogênico/química , Coffea/química , Café/química , Café/metabolismo , Humanos , Extratos Vegetais/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
10.
Neurourol Urodyn ; 37(8): 2560-2570, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252154

RESUMO

AIMS: We explored the therapeutic potential of intragastric administration traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung, ITG) extract and its active component Daidzin on cyclophosphamide (CYP)-induced cystitis and bladder hyperactivity in rats. METHODS: Female Wistar rats were divided into control, CYP (200 mg/kg), CYP + ITG (1.17 g/kg/day), CYP + Daidzin (12.5 mg/kg/day), and 1 week of ITG preconditioning with CYP (ITG + CYP) groups. We determined the trans cystometrogram associated with external urethral sphincter electromyogram, and the expression of M2 and M3 muscarinic and P2 × 2 and P2 × 3 purinergic receptors by Western blot in these animals. RESULTS: ITG extract contains 1.07% of Daidzin and 0.77% of Daidzein by high-performance liquid chromatography. Daidzin was more efficient than Daidzein in scavenging H2 O2 activity by a chemiluminescence analyzer. CYP induced higher frequency, shorter intercontraction interval, lower maximal voiding pressure, lower threshold pressure, and Phase-2 emptying contraction with a depressed external urethral sphincter electromyogram activity, and hemorrhagic cystitis in the bladders. The altered parameters by CYP were significantly improved in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. The P2 × 2 and P2 × 3 expressions were significantly upregulated in CYP group, but were depressed in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. The M2 expression was not significantly different among these five groups. The M3 expression was significantly upregulated in CYP group, but was significantly depressed in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. CONCLUSIONS: These data suggest that ITG extract through its active component Daidzin effectively improved CYP-induced cystitis by the action of restoring Phase 2 activity and inhibiting the expressions of P2 × 2, P2 × 3, and M3 receptors.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Isoflavonas/farmacologia , Bexiga Urinária/efeitos dos fármacos , Animais , Ciclofosfamida/toxicidade , Cistite/induzido quimicamente , Cistite/fisiopatologia , Eletromiografia , Feminino , Ratos , Ratos Wistar , Receptor Muscarínico M2/efeitos dos fármacos , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/efeitos dos fármacos , Receptor Muscarínico M3/metabolismo , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Uretra/efeitos dos fármacos , Uretra/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/fisiopatologia , Micção/efeitos dos fármacos
11.
PLoS Biol ; 16(5): e2003619, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29771909

RESUMO

During the development of the visual system, high levels of energy are expended propelling axons from the retina to the brain. However, the role of intermediates of carbohydrate metabolism in the development of the visual system has been overlooked. Here, we report that the carbohydrate metabolites succinate and α-ketoglutarate (α-KG) and their respective receptor-GPR91 and GPR99-are involved in modulating retinal ganglion cell (RGC) projections toward the thalamus during visual system development. Using ex vivo and in vivo approaches, combined with pharmacological and genetic analyses, we revealed that GPR91 and GPR99 are expressed on axons of developing RGCs and have complementary roles during RGC axon growth in an extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent manner. However, they have no effects on axon guidance. These findings suggest an important role for these receptors during the establishment of the visual system and provide a foundational link between carbohydrate metabolism and axon growth.


Assuntos
Metabolismo dos Carboidratos , Crescimento Neuronal , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2/metabolismo , Retina/embriologia , Animais , Ácidos Cetoglutáricos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Ácido Succínico/metabolismo
12.
Phytomedicine ; 36: 273-282, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157825

RESUMO

BACKGROUND: Platelet activation and subsequent accumulation at sites of vascular injury perform a central role in thrombus formation, which is believed to be the trigger of several cardiovascular diseases, such as atherosclerosis, myocardial infarction and strokes. In this sense, the search for agents that are capable of blocking platelets aggregation has important implications for these diseases. Callicarpa nudiflora (C. nudiflora) Hook is a traditional Chinese medicine herb for eliminating stasis to subdue swelling and hemostasis. Our previous study found several compounds extracted from this herb, including 1, 6-di-O-caffeoyl-ß-D-glucopyranoside (CGP), showed inhibitory effects on adenosine diphosphate (ADP) induced platelet aggregation. PURPOSE: The aim of current study is confirmation of the anti-platelet effects and elucidation of the probable mechanisms. METHODS: The experiments were performed on platelet rich plasma freshly isolated from SD rat. ADP, U46619 or arachidonic acid (AA) induced platelet aggregation assay were performed to evaluate the anti-platelet properties of CGP. Activated αIIbß3 integrin abundance, serotonin (5-HT) secretion, thromboxane A2 (TXA2) synthesis was determined to assess the effects of CGP on platelet activation. Furthermore, RhoA and PI3K/Akt/GSK3ß signal transduction were analyzed by Western Blotting assay. In addition, radiolabelled ligand binding assay was involved to evaluate the ability of CGP binding to thromboxane prostanoid (TP) and P2Y12 receptors. RESULTS: CGP inhibited platelet aggregation induced by ADP, U46619 and arachidonic acid (AA), significantly. Furthermore, it is also found that LGP exhibited obvious inhibitory effects on αIIbß3 integrin activation, serotonin (5-HT) secretion from granule and thromboxane A2 (TXA2) synthesis. Next, we found that CGP suppressed RhoA and PI3K/Akt/GSK3ß signal transduction. Data from radiolabelled ligand binding assay showed that CGP displayed apparent competing effects on TP and P2Y12 receptors. CONCLUSION: Collectively, the data presented here demonstrated that CGP, a natural compound from Callicarpa nudiflora Hook, inhibited the development of platelet aggregation and amplification of platelet activation. These inhibitory effects may be associated with its dual-receptor inhibition on P2Y12 and TP receptors.


Assuntos
Ácidos Cafeicos/farmacologia , Callicarpa/química , Glucosídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12 , Transdução de Sinais/efeitos dos fármacos , Tromboxano A2/metabolismo
13.
BMC Complement Altern Med ; 17(1): 480, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017492

RESUMO

BACKGROUND: During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. METHODS: Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. RESULTS: EA effectively reduced the level of pro-inflammatory cytokine interleukin-1ß (IL-1ß) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. CONCLUSION: Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance.


Assuntos
Eletroacupuntura , Hiperplasia/metabolismo , Infarto da Artéria Cerebral Média/terapia , Inflamação/metabolismo , Receptores Purinérgicos P2/metabolismo , Pontos de Acupuntura , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Região CA1 Hipocampal/metabolismo , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Interleucina-1beta/metabolismo , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
14.
Neuroscience ; 349: 253-263, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28279755

RESUMO

Increases in plasma osmolality activates the paraventricular nucleus of the hypothalamus (PVN) which in turn mounts a physiological response by increasing the release of arginine vasopressin and sympathetic nerve activity to end organs such as the kidney. The PVN expresses an abundance of purinergic receptors including P2X2 receptors. In the present study, we sought to determine (1) whether P2X2-expressing PVN neurons are activated by hypertonic saline or hypertonic mannitol and (2) what effects P2X receptor blockade has on sympathetic nerve activation mediated by a hyperosmotic stimulus. Male Wistar rats were randomly assigned to three groups and intravenously infused with either isotonic saline (0.154M, 0.5mL), hypertonic saline (3M, 0.5mL) or hypertonic mannitol (10% w/v, 0.5mL). Significantly greater numbers of Fos-positive cells were observed in the hypertonic saline (393±29)- and hypertonic mannitol (141±11)-infused rats compared with control, saline-treated, rats (47±2 neurons/PVN section). Furthermore, there was a significant increase in the number of activated (Fos-positive) P2X2 expressing PVN neurons in the hypertonic saline (65±7) and hypertonic mannitol (37±7)-treated rats compared with controls (16±2). Microinjection of a P2X receptor antagonist, PPADS, within the PVN significantly attenuated sympathetic nerve activation driven by a hyperosmotic stimulus. The hyperosmotically induced increase in lumbar sympathetic nerve activity was significantly blunted after PPADS pre-treatment. Collectively, our findings indicate that hyperosmotic stimulation activates a subset of P2X2 expressing PVN neurons that might facilitate increased sympathetic drive.


Assuntos
Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Solução Salina Hipertônica/farmacologia , Animais , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Ratos Wistar
15.
J Chem Neuroanat ; 78: 25-33, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515691

RESUMO

Focus on the purinergic receptor P2Y11 has increased following the finding of an association between the sleep disorder narcolepsy and a genetic variant in P2RY11 causing decreased gene expression. Narcolepsy is believed to arise from an autoimmune destruction of the hypothalamic neurons that produce the neuropeptide hypocretin/orexin. It is unknown how a decrease in expression of P2Y11 might contribute to an autoimmune reaction towards the hypocretin neurons and the development of narcolepsy. To advance narcolepsy research it is therefore extremely important to determine the neuroanatomical localization of P2Y11 in the brain with particular emphasis on the hypocretin neurons. In this article we used western blot, staining of blood smears, and flow cytometry to select two antibodies for immunohistochemical staining of macaque monkey brain. Staining was seen in neuron-like structures in cortical and hypothalamic regions. Rats do not have a gene orthologue to the P2Y11 receptor and therefore rat brain was used as negative control tissue. The chromogenic signal observed in macaque monkey brain in neurons was not considered reliable, because the antibodies stained rat brain in a similar distribution pattern. Hence, the neuroanatomical localization of the P2Y11 receptor remains undetermined due to the lack of specific P2Y11 antibodies for brain immunohistochemistry.


Assuntos
Cerebelo/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Imuno-Histoquímica/métodos , Macaca , Ratos
16.
Platelets ; 27(4): 322-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26559117

RESUMO

Anti-platelet agents play a central part in the treatment and prevention of acute thrombotic events. Discriminating animal models are needed for the development of novel agents. The chacma baboon has been extensively used as a model to evaluate anti-platelet agents. However, limited data exist to prove the translatability of this species to humans. We aimed to determine the suitability of the chacma baboon in preclinical human targeted GPIIb/IIIa, GPIbα and P2Y12 studies. Light-transmission platelet aggregometry (LTA), whole blood impedance aggregometry, receptor number quantification and genomic DNA sequencing were performed. Baboon ADP and arachidonic acid-induced LTA aggregation results differed significantly from human values, even at increased concentrations. LTA ristocetin-induced agglutination was comparable between species, but baboon platelets needed twice the concentration of ristocetin to elicit a similar response. Citrated baboon blood had significantly less aggregation than humans when evaluated with impedance aggregometry. However, hirudinised baboon whole blood gave similar aggregation as humans at the same agonist concentrations. GPIIb, GPIIIa and GPIbα numbers were significantly more on the baboon platelets. None of the amino acids deemed vital for receptor function, ligand binding or receptor inhibition, were radically different between the species. However, a conservative change in a calcium-binding region of GPIIb may render the baboon platelets more sensitive to calcium-binding agents. The chacma baboon may be used for the evaluation of human-targeted GPIIb/IIIa-, GPIbα- and P2Y12-inhibiting agents. However, the best anticoagulant, optimal agonist concentrations, increase in receptor number and sequence differences must be considered for any future studies.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Superfície Celular/metabolismo , Difosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ácido Araquidônico/farmacologia , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Humanos , Masculino , Papio ursinus , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Ristocetina/farmacologia
17.
Mol Cancer ; 14: 201, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597723

RESUMO

BACKGROUND: One of the challenging problems of current radio-chemotherapy is recurrence and metastasis of cancer cells that survive initial treatment. We propose that one of the unwanted effects of radiochemotherapy is the release from damaged ("leaky") cells of nucleotides such as ATP and UTP that exert pro-metastatic functions and can directly stimulate chemotaxis of cancer cells. METHODS: To address this problem in a model of human lung cancer (LC), we employed several complementary in vitro and in vivo approaches to demonstrate the role of extracellular nucleotides (EXNs) in LC cell line metastasis and tumor progression. We measured concentrations of EXNs in several organs before and after radiochemotherapy. The purinergic receptor agonists and antagonists, inhibiting all or selected subtypes of receptors, were employed in in vitro and in vivo pro-metastatic assays. RESULTS: We found that EXNs accumulate in several organs in response to radiochemotherapy, and RT-PCR analysis revealed that most of the P1 and P2 receptor subtypes are expressed in human LC cells. EXNs were found to induce chemotaxis and adhesion of LC cells, and an autocrine loop was identified that promotes the proliferation of LC cells. Most importantly, metastasis of these cells could be inhibited in immunodeficient mice in the presence of specific small molecule inhibitors of purinergic receptors. CONCLUSIONS: Based on this result, EXNs are novel pro-metastatic factors released particularly during radiochemotherapy, and inhibition of their pro-metastatic effects via purinergic signaling could become an important part of anti-metastatic treatment.


Assuntos
Trifosfato de Adenosina/fisiologia , Fatores Quimiotáticos/fisiologia , Quimiotaxia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/patologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia/efeitos adversos , Líquido Extracelular/fisiologia , Fator de Crescimento de Hepatócito/fisiologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos Endogâmicos C57BL , Camundongos SCID , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359991

RESUMO

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Assuntos
Regulação do Apetite , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Int J Food Sci Nutr ; 66(5): 579-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088281

RESUMO

It is known that red wine has cardioprotective properties. However, its influence is unknown about purinergic system. Therefore, we study the influence of the treatment with red wine or ethanol in purinergic neurotransmission. We used Wistar Kyoto rats (WKY), diabetic streptozotocin-induced WKY and spontaneously hypertensive rats (SHR), treated with red wine (12.5%) or ethanol (12.5%). The cardiovascular function stimulated with purinergic agonists and systolic blood pressure (SBP) was assessed. In atria of diabetics and SHRs, the P1 receptor response was decreased, unlike the P2 receptor response was increased. Likewise, in aorta the affinity to adenosine (ADO) was decreased from SHRs and diabetics. Furthermore, the P2X function was increased just SHRs. All these alterations were improved after treatment with red wine, resulting in reduction of SBP from diabetics and SHRs, but not when treated with ethanol. This study has important implications, because it is shown that consumption of red wine can improve cardiovascular system by purinergic neurotransmission.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Hipertensão/tratamento farmacológico , Receptores Purinérgicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vitis , Vinho , Adenosina/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Etanol/farmacologia , Hipertensão/etiologia , Hipertensão/metabolismo , Masculino , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
20.
Br J Pharmacol ; 171(1): 214-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117220

RESUMO

BACKGROUND AND PURPOSE: Saponins isolated from Panax notoginseng (Burk.) F.H. Chen have been shown to relieve thrombogenesis and facilitate haemostasis. However, it is not known which saponin accounts for this haemostatic effect. Hence, in the present study we aimed to identify which saponins contribute to its haemostatic activity and to elucidate the possible underlying mechanisms. EXPERIMENTAL APPROACH: Platelet aggregation was analysed using a platelet aggregometer. Prothrombin time, activated partial thromboplastin time and thrombin time were measured using a blood coagulation analyser, which was further corroborated with bleeding time and thrombotic assays. The interaction of notoginsenoside Ft1 with the platelet P2Y12 receptor was determined by molecular docking analysis, cytosolic Ca(2+) and cAMP measurements, and phosphorylation of PI3K and Akt assays. KEY RESULTS: Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Molecular docking analysis suggested that Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor. Ft1 also affected the production of cAMP and increased phosphorylation of PI3K and Akt downstream of P2Y12 signalling pathways. CONCLUSION AND IMPLICATIONS: Ft1 enhanced platelet aggregation by activating a signalling network mediated through P2Y12 receptors. These novel findings may contribute to the effective utilization of this compound in the therapy of haematological disorders.


Assuntos
Plaquetas/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2/efeitos dos fármacos , Saponinas/farmacologia , Animais , Sítios de Ligação , Plaquetas/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Tempo de Tromboplastina Parcial , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fitoterapia , Extratos Vegetais/metabolismo , Plantas Medicinais , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/metabolismo , Ligação Proteica , Tempo de Protrombina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Ratos , Ratos Wistar , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12 , Saponinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tempo de Trombina , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA