RESUMO
OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Ciliao" (BL 32) and "Huiyang" (BL 35) on the pain, urodynamic and the expressions of transient receptor poteintial vanilloid 1 (TRPV1) and P2X3 receptors in bladder of rats with interstitial bladder (IC), and to explore the possible mechanism on EA for IC. METHODS: A total of 24 Wistar female rats were randomly divided into a blank group, a model group and an EA group, 8 rats in each group. In the model group and the EA group, IC model was established by intraperitoneal injection of cyclophosphamide by 150 mg/kg at once. EA was applied at "Ciliao" (BL 32) and "Huiyang" (BL 35) in the EA group for 20 min, with continuous wave, 30 Hz in frequency, once a day for 3 consecutive days. Mechanical pain threshold of bladder and urodynamic indexes (first urination time, bladder effective volume and urination pressure) were observed after model establishment and after intervention, the expressions of TRPV1 and P2X3 receptors in the bladder were detected by Western blot. RESULTS: After model establishment, the mechanical pain threshold of bladder was decreased in the model group and the EA group compared with that in the blank group (P<0.01). After intervention, the mechanical pain threshold of bladder in the model group was lower than the blank group (P<0.01), and that in the EA group was higher than the model group (P<0.01). The urodynamic of the rats in the blank group was normal, obvious abnormal contraction during the filling period of bladder was found in the rats of the model group, while no abnormal contraction during the filling period was found in the rats of the EA group. After model establishment, in the model group and the EA group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.01). After intervention, in the model group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.05); in the EA group, the first urination time was later than the model group (P<0.05), while bladder effective volume and urination pressure were higher than the model group (P<0.05). Compared with the blank group, the protein expressions of TRPV1 and P2X3 receptors in bladder were up-regulated in the model group (P<0.01); compared with the model group, the protein expressions of TRPV1 and P2X3 receptors in bladder were down-regulated in the EA group (P<0.05). CONCLUSION: EA can relieve bladder pain and improve urodynamic in IC rats. The mechanism may be related to the down-regulation on the expressions of TRPV1 and P2X3 receptors and the further inhibition on the abnormal input of bladder signal.
Assuntos
Antineoplásicos , Cistite Intersticial , Eletroacupuntura , Ratos , Feminino , Animais , Cistite Intersticial/genética , Cistite Intersticial/terapia , Bexiga Urinária , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Dor , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
OBJECTIVE: To observe the effect of moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) on acetylcholine (Ach), adenosine triphosphate (ATP) and muscarinic-type choline receptor (M2) and purine receptor P2X3 in bladder tissue in the rats with neurogenic bladder (NB) of detrusor areflexia after lumbar-sacral spinal cord injury and explore the underlying mechanism of moxibustion for promoting detrusor contraction. METHODS: Sixty SD rats were randomly divided into a model preparation group (n=45) and a sham-operation group (n=15). In the model preparation group, the modified Hassan Shaker spinal cord transection method was used to prepare the model of NB. In the sham-operation group, the spinal cord transection was not exerted except laminectomy and spinal cord exposure. Among the rats with successfully modeled, 30 rats were selected and divided randomly into a model group and a moxibustion group, with 15 rats in each one. On the 15th day after the operation, moxibustion was applied at "Guanyuan" (CV 4) and "Shenque" (CV 8) in the moxibustion group, 10 min at each acupoint, once a day. The consecutive 7-day treatment was as one course and the intervention for 2 courses was required. Urodynamic test was adopted to evaluate bladder function in rats. Using HE staining, the morphological changes in bladder tissue were observed. The content of Ach and ATP in bladder tissue was measured with biochemical method, and the protein and mRNA expression levels of M2 and P2X3 receptors in bladder tissue were detected with Western blot and real-time fluorescence quantification PCR method. RESULTS: Compared with the sham-operation group, the maximum bladder capacity, leakage point pressure and bladder compliance were increased in the rats of the model group (P<0.05). Compared with the model group, the maximum bladder capacity, the leakage point pressure and bladder compliance were decreased in the rats of the moxibustion group (P<0.05). In the model group, the detrusor fibres were arranged irregularly, bladder epithelial tissues were not tightly connected and cell arrangement was disordered, combined with a large number of vacuolar cells. In the moxibustion group, compared with the model group, the detrusor fibres were arranged regularly, bladder epithelial cells were well distributed and vacuolar cells were reduced. Compared with the sham-operation group, the content of Ach and ATP in bladder tissue was decreased (P<0.05), the protein and mRNA expression levels of M2 and P2X3 receptors were reduced (P<0.05) in the model group. In the moxibustion group, the content of Ach and ATP in bladder tissue was increased (P<0.05) and the protein and mRNA expression levels of M2 and P2X3 receptors were increased (P<0.05) as compared with the model group. CONCLUSION: Moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) may effectively improve bladder function in the rats with NB of detrusor areflexia after lumbar-sacral spinal cord injury and its underlying mechanism is related to promoting the release of Ach and up-regulating the expression of M2 receptor, thereby enhancing the release of ATP and increasing the expression of P2X3 receptor. Eventually, detrusor contraction is improved.
Assuntos
Moxibustão , Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Animais , Moxibustão/métodos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Bexiga Urinária , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/terapiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail. AIM OF THE STUDY: We sought to determine the analgesic effect of SZAP in collagen-induced arthritis (CIA) rats and explore the underlying mechanisms of pain transmission, such as via the TRPV1 and P2X3 receptors. METHODS: After CIA was established, rats were treated with SZAP for 7 days. Paw thickness, arthritis score, and haematoxylin and eosin staining were used to evaluate the effectiveness of SZAP. Paw withdrawal threshold (PWT) and tail-flick latency (TFL) were used to estimate the analgesic effect of SZAP. The levels of PGE2, BK, 5-HT, SP, and CGRP in the serum and synovium were determined using ELISA kits, and ATP in the synovium was measured using HPLC. The expression of TRPV1 and P2X3 in the DRG was detected using western blotting and immunofluorescence. TRPV1 and P2X3 agonists were further used to determine the analgesic effects of SZAP on CIA rats based on PWT and TFL. RESULTS: SZAP not only significantly ameliorated arthritis scores and paw thickness by improving the pathological damage of synovial joints, but also remarkably alleviated pain in CIA rats. Further, treatment with SZAP significantly reduced peripheral 5-HT, PGE2 BK, SP, CGRP, and ATP. Additionally, the expression of TRPV1 and P2X3 in the DRG was markedly downregulated by SZAP. Interestingly, the analgesic effect of SZAP was weakened (reduction of PWT and TFL) when TRPV1 and P2X3 were activated by capsaicin or α,ß-meATP, respectively. CONCLUSION: SZAP ameliorates rheumatalgia by suppressing hyperalgesia and pain transmission through the inhibition of TRPV1 and P2X3 in the DRG of CIA rats.
Assuntos
Artrite Experimental/tratamento farmacológico , Colágeno/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Fitoterapia , Receptores Purinérgicos P2X3/metabolismo , Canais de Cátion TRPV/metabolismo , Administração Tópica , Animais , Capsaicina/farmacologia , Diclofenaco/administração & dosagem , Diclofenaco/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canais de Cátion TRPV/genéticaRESUMO
ATP-dependent P2X3 receptors play a crucial role in the sensitization of nerve fibers and pathological pain pathways. They are also involved in pathways triggering cough and may contribute to the pathophysiology of endometriosis and overactive bladder. However, despite the strong therapeutic rationale for targeting P2X3 receptors, preliminary antagonists have been hampered by off-target effects, including severe taste disturbances associated with blocking the P2X2/3 receptor heterotrimer. Here we present a P2X3 receptor antagonist, eliapixant (BAY 1817080), which is both highly potent and selective for P2X3 over other P2X subtypes in vitro, including P2X2/3. We show that eliapixant reduces inflammatory pain in relevant animal models. We also provide the first in vivo experimental evidence that P2X3 antagonism reduces neurogenic inflammation, a phenomenon hypothesised to contribute to several diseases, including endometriosis. To test whether eliapixant could help treat endometriosis, we confirmed P2X3 expression on nerve fibers innervating human endometriotic lesions. We then demonstrate that eliapixant reduces vaginal hyperalgesia in an animal model of endometriosis-associated dyspareunia, even beyond treatment cessation. Our findings indicate that P2X3 antagonism could alleviate pain, including non-menstrual pelvic pain, and modify the underlying disease pathophysiology in women with endometriosis. Eliapixant is currently under clinical development for the treatment of disorders associated with hypersensitive nerve fibers.
Assuntos
Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Distúrbios Somatossensoriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Receptores Purinérgicos P2X3/genética , Distúrbios Somatossensoriais/tratamento farmacológico , Distúrbios Somatossensoriais/etiologiaRESUMO
BACKGROUND: Whether electroacupuncture (EA) stimulation at different frequencies has a similar effect on spared nerve injury (SNI) as other neuropathic pain models, and how EA at different frequencies causes distinct analgesic effects on neuropathic pain is still not clear. METHODS: Adult male Sprague-Dawley rats were randomly divided into sham SNI, SNI, 2 Hz, 100 Hz and sham EA groups. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured. EA was performed once a day on days 1 to 14 after SNI. The expressions of transient receptor potential cation subfamily V member 1 (TRPV1) and peripheral purinergic P2X receptor 3 (P2X3) were determined by western blotting and immunofluorescence. TRPV1 siRNA and P2X3 siRNA were administered by intrathecal injection. TRPV1 or P2X3 agonists were combined with EA. RESULTS: There were significant decreases in PWT, but no changes in PWL in the 14 days after SNI. EA using 2- or 100-Hz stimulation similarly increased PWT at every time point. The cytosol protein expression of P2X3 in the L4-L6 dorsal root ganglia (DRG) increased, but the expression of TRPV1 decreased in the SNI model. Both these effects were ameliorated by EA, with 2-Hz stimulation having a stronger effect than 100-Hz stimulation. Blocking either TRPV1 or P2X3 specific siRNAs attenuated the decreased PWT induced by SNI. Administration of either a TRPV1 or P2X3 agonist inhibited EA analgesia. CONCLUSION: 2- and 100-Hz EA similarly induced analgesic effects in SNI. This effect was related to up-regulation and down-regulation, respectively, of cytosol protein expression of P2X3 and TRPV1 in L4-L6 DRG, with 2 Hz having a better effect than 100 Hz.
Assuntos
Analgesia por Acupuntura/métodos , Eletroacupuntura/métodos , Traumatismos dos Nervos Periféricos/terapia , Receptores Purinérgicos P2X3/metabolismo , Canais de Cátion TRPV/metabolismo , Analgesia por Acupuntura/instrumentação , Animais , Eletroacupuntura/instrumentação , Humanos , Masculino , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canais de Cátion TRPV/genéticaRESUMO
P2X3 is a ligand-gated nonselective cation channel and permeable to Na+, K+ and Ca2+. Adenosine triphosphate (ATP) activation of the P2X3 on primary sensory ganglion neurons is involved in nociceptive transmission. Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. Puerarin inhibits nociceptive signal transmission by inhibiting the P2X3 in the dorsal root ganglia (DRG) and sympathetic ganglia, but its molecular mechanism is unclear. The aim of this study was to explore the molecular mechanism of puerarin on the P2X3. Here, molecular docking results revealed that puerarin binds well to the human P2X3 protein in the vicinity of the ATP binding pocket. Protein-ligand docking showed that the V64A mutation reduced the effect of puerarin but had little effect on ATP. V64A site-directed mutagenesis of P2X3 was performed using an overlap extension PCR technique. The wild-type and V64A mutant pEGFP-C1-P2X3 recombinant plasmids were transfected into HEK 293 cells. The electrophysiology results demonstrated that puerarin exerted an obvious inhibitory effect on ATP-activated currents in HEK 293 cells transfected with the wild-type P2X3, while little inhibition was observed in HEK 293 cells transfected with the mutant P2X3. These studies suggest that puerarin inhibits the P2X3 by binding to V64A.
Assuntos
Isoflavonas/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Isoflavonas/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genéticaRESUMO
Electroacupuncture (EA) has effective analgesic effects. Our previous study demonstrated that the upregulation of P2X3 receptors in the dorsal root ganglia (DRG) might participate in heroin withdrawal-induced hyperalgesia. The aim of this study is to further explore whether 2 Hz EA reduces heroin relapse associated with its analgesic effect and whether P2X3 receptors in the DRG are involved in this process. 2 Hz EA was adopted to treat the heroin SA rats in the present study. Heroin-seeking and pain sensitivity were evaluated. The expression of P2X3 receptors in the DRG was detected. Our results showed that compared with the control group, the reinstatement, thermal hyperalgesia, and mechanical allodynia of the heroin-addicted group were increased significantly. The expression of P2X3 receptors in the DRG was increased markedly. After being treated using 2 Hz EA, reinstatement was reduced, hyperalgesia was decreased, and the upregulated expression of P2X3 receptors in the DRG had decreased significantly compared to that in the heroin-addicted group. Consequently, our results indicated that 2 Hz EA was an effective method for treating heroin-induced hyperalgesia and helping prevent relapse, and the potential mechanism might be related to the downregulation of P2X3 receptor expression in the DRG.
Assuntos
Eletroacupuntura/métodos , Heroína/efeitos adversos , Hiperalgesia/terapia , Receptores Purinérgicos P2X3/genética , Síndrome de Abstinência a Substâncias/terapia , Animais , Gânglios Espinais/patologia , Gânglios Espinais/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Hiperalgesia/patologia , Neuralgia/patologia , Neuralgia/terapia , Neurônios/patologia , Neurônios/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/patologiaRESUMO
BACKGROUND: Suo Quan Wan (SQW) is an effective traditional Chinese prescription on treated lower urinary tract symptoms (LUTS), and has been proved have modulation effect on the expression of transient receptor potential vanilloid 1 (TRPV1) in accordance with the recovery of bladder function of overactive bladder rat. This study further investigated the mechanism of SQW modulated TRPV1 signaling and bladder function using TRPV1 knockout (KO) mice. METHODS: Study was conducted using wild type and TRPV1 KO mice. The KO animals were grouped into KO group and SQW treated group. We applied in vivo cystometrogram recording techniques to analyze voiding control of the urinary bladder, as well as in vitro organ bath to study bladder distension response to various compounds, which subsequently elicited normal smooth muscle excitation. Real-time polymerase chain reaction and western blot analysis were performed to quantify the expression of TRPV1 and P2X3 in the bladder. ATP released from bladder strips was measured using the luciferin-luciferase ATP bioluminescence assay kit. RESULTS: KO preparation inhibited decrease micturition times, while micturition interval and volume were increased. Results of urodynamic record of the TRPV1-/- mice during NS infusion showed reduced bladder pressure and contraction which exhibited decreased response to α, ß-me ATP, KCl, and carbachol and no response to CAP. The ATP released by the TRPV1-/- mice from strips of bladder smooth muscles was significantly reduced, along with no TRPV1 expression and reduced expression level of P2X3 in the bladder. SQW could increase ATP release in some degree, while had no effect on TRPV1 and P2X3 expression. SQW could improve bladder pressure slightly, while make no significantly effects on the force response to α,ß-meATP, CAP, carbachol in gradient concentration, and KCl, as well as MBC and voiding activities. CONCLUSIONS: TRPV1 plays an important role in urinary bladder mechanosensitivity. The effective SQW is hard to play its proper role on bladder function of mice without TRPV1.
Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Canais de Cátion TRPV/deficiência , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiopatologia , Ratos , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Canais de Cátion TRPV/genética , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Micção/efeitos dos fármacos , UrodinâmicaRESUMO
To investigate the urination-reducing effect and mechanism of Zhuangyao Jianshen Wan (ZYJCW). In this study, SI rats were subcutaneously injected with 150 mg · kg(-1) dose of D-galactose to prepare the sub-acute aging model and randomly divided into the model group, the Suoquan Wan group (1.17 g · kg(-1) · d(-1)), and ZYJCW high, medium and low dose groups (2.39, 1.20, 0.60 g · kg(-1) · d(-1)) , with normal rats in the blank group. They were continuously administered with drugs for eight weeks. The metabolic cage method was adopted to measure the 24 h urine volume and 5 h water load urine volume in rats. The automatic biochemistry analyzer was adopted to detect urine concentrations of Na+, Cl-, K+. The ELISA method was used to determine serum aldosterone (ALD) and antidiuretic hormone (ADH). The changes in P2X1 and P2X3 mRNA expressions in bladder tissues of rats were detected by RT-PCR. According to the results, both ZYJCW high and medium dose groups showed significant down-regulations in 24 h urine volume and 5 h water load urine volume in (P <0.05, P <0.01), declines in Na+ and Cl- concentrations in urine (P <0.01), notable rises in plasma ALD and ADH contents (P <0.05, P <0.01) and remarkable down-regulations in the P2X1 and P2X3 mRNA expressions in bladder tissues (P <0.01). The ZYJCW low dose group revealed obvious reductions in Na+ and Cl- concentrations in urine (P <0.01). The results indicated that ZYJCW may show the urination-reducing effect by down-regulating the P2X1 and P2X3 mRNA expressions in bladder tissues of rats with diuresis caused by kidney deficiency.
Assuntos
Envelhecimento/fisiologia , Diurese/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Nefropatias/tratamento farmacológico , RNA Mensageiro/análise , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X3/genética , Animais , Feminino , Regulação da Expressão Gênica , Nefropatias/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/metabolismoRESUMO
The aim of this study is to investigate the role of the purinergic receptor P2X3 in the peripheral and central nervous systems during acupuncture treatment for the visceral pain of irritable bowel syndrome (IBS). A total of 24 8-day-old Sprague-Dawley (SD) neonatal male rats (SPF grade) were stimulated using colorectal distention (CRD) when the rats were awake. The modeling lasted for 2 weeks with one stimulation per day. After 6 weeks, the rats were randomly divided into three groups of eight each: (1) the normal group (NG, n = 8); (2) the model group (MG, n = 8); and (3) the model + electroacupuncture group (EA, n = 8) that received electroacupuncture at a needling depth of 5 mm at the Shangjuxu (ST37, bilateral) and Tianshu (ST25, bilateral) acupoints. The parameters of the Han's acupoint nerve stimulator (HANS) were as follows: sparse-dense wave with a frequency of 2/100 Hz, current of 2 mA, 20 min/stimulation, and one stimulation per day; the treatment was provided for seven consecutive days. At the sixth week after the treatment, the abdominal withdrawal reflex (AWR) score was determined; immunofluorescence and immunohistochemistry were used to measure the expression of the P2X3 receptor in myenteric plexus neurons, prefrontal cortex, and anterior cingulate cortex; and, a real-time PCR assay was performed to measure the expression of P2X3 messenger RNA (mRNA) in the dorsal root ganglion (DRG) and spinal cord. After stimulation with CRD, the expression levels of the P2X3 receptor in the inter-colonic myenteric plexus, DRG, spinal cord, prefrontal cortex, and anterior cingulate cortex were upregulated, and the sensitivity of the rats to IBS visceral pain was increased. Electroacupuncture (EA) could downregulate the expression of the P2X3 receptor and ease the sensitivity to visceral pain. The P2X3 receptor plays an important role in IBS visceral pain. The different levels of P2X3 in the peripheral enteric nervous system and central nervous system mediate the effects of the EA treatment of the visceral hyperalgesia of IBS.
Assuntos
Sistema Nervoso Central/fisiopatologia , Eletroacupuntura , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/fisiopatologia , Sistema Nervoso Periférico/fisiopatologia , Receptores Purinérgicos P2X3 , Dor Visceral/fisiopatologia , Dor Visceral/terapia , Pontos de Acupuntura , Animais , Animais Recém-Nascidos , Regulação para Baixo , Sistema Nervoso Entérico/fisiopatologia , Masculino , Medição da Dor , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/biossíntese , Receptores Purinérgicos P2X3/genética , Dor Visceral/etiologiaRESUMO
BACKGROUND: Electroacupuncture (EA), as a traditional clinical method, is widely accepted in pain clinics, but the analgesic effect of EA has not been fully demonstrated. In the present study, we investigated the effect of EA on chronic pain and expression of P2X3 receptors in the spinal cord of rats with chronic constriction injury (CCI). METHODS: The study was conducted in 2 parts. In part 1, Sprague Dawley rats were divided into 6 groups (n = 10): sham-CCI, CCI, LEA; CCI + 2 Hz EA at acupoints), HEA; CCI + 15 Hz EA at acupoints), NA-LEA (CCI + 2 Hz EA at nonacupoints), and NA-HEA (CCI + 15 Hz EA at nonacupoints). EA treatment was performed once a day on days 4 to 9 after CCI. Nociception was assessed using von Frey filaments and a hotplate apparatus. The protein and the messenger RNA (mRNA) levels of P2X3 receptors in the spinal cord were assayed by Western blotting and real-time polymerase chain reaction, respectively. In part 2, rats were divided into 5 groups (n = 10): sham-CCI, CCI, EA (CCI + EA at acupoints), NA-EA (CCI + EA at nonacupoints), and U0126 (CCI + intrathecal injection of U0126). EA treatment was conducted similar to part 1. Rats were given 5 µg U0126 in the U0126 group and 5% dimethyl sulfoxide intrathecally. Ten microliters was used as a vehicle for the other 4 groups twice a day on days 4 to 9 after CCI. Extracellular signal-regulated kinase 1/2 (ERK1/2) and ERK1/2 phosphorylation in the spinal cord were also assayed by Western blotting. RESULTS: EA treatment exhibited significant antinociceptive effects and reduced the CCI-induced increase of both protein and mRNA expression of P2X3 receptors in the spinal cord. Furthermore, 2 Hz EA had a better analgesic effect than 15 Hz EA, and the protein and mRNA level of P2X3 receptor in spinal cord were lower in rats treated with 2 Hz EA at acupoints than 15 Hz EA at acupoints. Either EA at acupoints or intrathecal injection of U0126 relieved allodynia and hyperalgesia and reduced the expression of P2X3 receptors and ERK1/2 phosphorylation in the spinal cord. CONCLUSIONS: The data demonstrated that EA alleviates neuropathic pain behavior, at least in part, by reducing P2X3 receptor expression in spinal cord via the ERK1/2 signaling pathway. Low frequency EA has a better analgesic effect than high frequency HEA on neuropathic pain.