Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 101(12): 11354-11363, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268610

RESUMO

Amino acids play a key role in regulating milk protein synthesis partly through activation of the mammalian target of rapamycin (mTOR) signaling pathway. However, the involvement of extracellular AA sensing receptors in this process is not well understood. In nonruminants, it is well established that the AA taste 1 receptor member 1/3 (TAS1R1/TAS1R3) heterodimer contributes to the sensing of most l-AA. Whether this receptor is functional in bovine mammary cells is unknown. The objective of this study was to determine essential AA signaling through TAS1R1/TAS1R3 and their roles in regulating mTOR signaling pathway and casein mRNA abundance in primary bovine mammary epithelial cells and the Mac-T cell line. The bovine mammary epithelial cells were stimulated with complete Dulbecco's modified Eagle's medium (+EAA), medium without EAA (-EAA), or medium supplemented with only 1 of the 10 essential AA, respectively. The nonessential AA levels were the same across all treatments. Small interference RNA targeting TAS1R1 were designed and transfected into bovine primary mammary epithelial cells (bPMEC). Supplementation of a complete mixture of essential AA or Arg, Val, Leu, His, Phe, Met, and Ile individually led to greater mTOR phosphorylation. Phosphorylation of ribosomal protein S6 kinase ß-1 was greater in the presence of Val, Leu, Trp, Met, and Ile. Valine, Leu, Met, and Ile led to greater eIF4E-binding protein 1 phosphorylation. Although +EAA and a few individual AA tested induced increases in intracellular calcium, Met and Val were the most potent. Knockdown of TAS1R1 decreased intracellular calcium in bPMEC cultured with both Val and Met. Phosphorylation of mTOR, ribosomal protein S6 kinase ß-1, and eIF4E-binding protein 1 was lower when TAS1R1 was knocked-down in bPMEC supplemented with Val and Met. In addition, small interference RNA silencing of TAS1R1 resulted in lower ß-casein (CSN2) abundance. The TAS1R1/TAS1R3 receptor may sense extracellular AA and activate mTOR signaling in bovine mammary cells, likely by elevating intracellular calcium concentration. This mechanism appears to have a role in Met- and Val-induced changes in CSN2 mRNA abundance. Further in vivo studies will have to be performed to assess the relevance of this mechanism in the mammary gland.


Assuntos
Cálcio/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Metionina/metabolismo , Receptores de Aminoácido/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Valina/metabolismo , Animais , Caseínas/genética , Caseínas/metabolismo , Bovinos , Dimerização , Feminino , Glândulas Mamárias Animais/metabolismo , Fosforilação , Biossíntese de Proteínas , Receptores de Aminoácido/química , Receptores de Aminoácido/genética , Transdução de Sinais
2.
Biochemistry ; 48(39): 9266-77, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19705835

RESUMO

The chemoreceptors of Escherichia coli and Salmonella typhimurium form stable oligomers that associate with the coupling protein CheW and the histidine kinase CheA to form an ultrasensitive, ultrastable signaling lattice. Attractant binding to the periplasmic domain of a given receptor dimer triggers a transmembrane conformational change transmitted through the receptor to its cytoplasmic kinase control module, a long four-helix bundle that binds and regulates CheA kinase. The kinase control module comprises three functional regions: the adaptation region possessing the receptor adaptation sites, a coupling region that transmits signals between other regions, and the protein interaction region possessing contact sites for receptor oligomerization and for CheA-CheW binding. On the basis of the spatial clustering of known signal locking Cys substitutions and engineered disulfide bonds, this study develops the yin-yang hypothesis for signal transmission through the kinase control module. This hypothesis proposes that signals are transmitted through the four-helix bundle via changes in helix-helix packing and that the helix packing changes in the adaptation and protein interaction regions are tightly and antisymmetrically coupled. Specifically, strong helix packing in the adaptation region stabilizes the receptor on state, while strong helix packing in the protein interaction region stabilizes the off state. To test the yin-yang hypothesis, conserved sockets likely to strengthen specific helix-helix contacts via knob-in-hole packing interactions were identified in the adaptation, coupling, and protein interaction regions. For 32 sockets, the knob side chain was truncated to Ala to weaken the knob-in-hole packing and thereby destabilize the local helix-helix interaction provided by that socket. We term this approach a "knob truncation scan". Of the 32 knob truncations, 28 yielded stable receptors. Functional analysis of the signaling state of these receptors revealed seven lock-off knob truncations, all located in the adaptation region, that trap the receptor in its "off" signaling state (low kinase activity, high methylation activity). Also revealed were five lock-on knob truncations, all located in the protein interaction region, that trap the "on" state (high kinase activity, low methylation activity). These findings provide strong evidence that a yin-yang coupling mechanism generates concerted, antisymmetric helix-helix packing changes within the adaptation and protein interaction regions during receptor on-off switching. Conserved sockets that stabilize local helix-helix interactions play a central role in this mechanism: in the on state, sockets are formed in the adaptation region and disrupted in the protein interaction region, while the opposite is true in the off state.


Assuntos
Proteínas de Bactérias/química , Quimiotaxia , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Modelos Químicos , Mutação Puntual , Mapeamento de Interação de Proteínas/métodos , Receptores de Aminoácido/química , Transdução de Sinais/fisiologia , Motivos de Aminoácidos/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Histidina Quinase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Metiltransferases/química , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína/genética , Receptores de Aminoácido/genética , Receptores de Aminoácido/fisiologia , Salmonella typhimurium/química , Salmonella typhimurium/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA