Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 60: 139-145, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479902

RESUMO

OBJECTIVE: Evaluate the influence of the BsmI polymorphism of the vitamin D receptor gene on vitamin D levels, and inflammatory and oxidative stress markers in patients with Cystic Fibrosis supplemented with cholecalciferol megadose. METHODS: We performed a single-arm, non-randomized pre- and post-study of 17 patients aged 5 to 20 years with cystic fibrosis diagnosed with vitamin D insufficiency/deficiency 25-hydroxy vitamin< 30 ng/mL. Individuals were genotyped for the BsmI polymorphism of the vitamin D receptor gene and all received cholecalciferol supplementation of 4,000 IU daily for children aged 5 to 10 years and 10,000 IU for children over 10 years of age for 8 weeks. Interviews were conducted with personal data, sun exposure, anthropometric and blood samples of 25-hydroxy vitamin parathormone, serum calcium, ultrasensitive C-reactive protein, alpha 1 acid glycoprotein, total antioxidant capacity, malondialdehyde and kidney and liver function. Inter- and intra-group assessment was assessed by paired t-test Anova test or its non-parametric counterparts. RESULTS: The individuals were mostly male and reported no adverse effects from the use of supplementation, 64 % had 25-hydroxy vitamin levels >30 ng/mL. Patients with BB and Bb genotypes showed increased serum levels of 25-hydroxy vitamin. The group with BB genotype showed a reduction in alpha 1 acid glycoprotein. And individuals with the bb genotype had high levels of malondialdehyde compared to the pre-intervention time. CONCLUSION: It is concluded that variations of the BsmI polymorphism of the vitamin D receptor gene have different responses in vitamin D levels and markers of inflammation and oxidative stress.


Assuntos
Fibrose Cística , Deficiência de Vitamina D , Criança , Feminino , Humanos , Masculino , Colecalciferol , Fibrose Cística/genética , Suplementos Nutricionais , Malondialdeído , Orosomucoide/metabolismo , Estresse Oxidativo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Deficiência de Vitamina D/genética , Vitaminas , Pré-Escolar , Adolescente , Adulto Jovem
2.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393156

RESUMO

Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.


Assuntos
Aflatoxina B1 , Galinhas , Animais , Aflatoxina B1/metabolismo , Receptores de Calcitriol/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Microtomografia por Raio-X , Ração Animal/análise , Fósforo/metabolismo , Dieta/veterinária , Fígado
3.
Chin J Integr Med ; 30(2): 143-151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37046128

RESUMO

OBJECTIVE: To evaluate if berberine can act on vitamin D receptors (VDR) and thereby regulate the expression of tight junction proteins (TJPs) in irritable bowel syndrame-diarrhea-predominant (IBS-D) rats. METHODS: The newborn rats were induced into IBS-D rat model via neonatal maternal separation combined with acetic acid chemical stimulation. After modeling, the model was evaluated and rats were divided into the control group and berberine treatment groups (0.85, 1.7 and 3.4 mg/kg, once a day for 2 weeks). The distal colon was obtained and colonic epithelial cells (CECs) were isolated and cultured after IBS-D model evaluation. The vitamin D receptor response element (VDRE) reporter gene was determined in the CECs of IBS-D rats to analyze the effect of berberine on the VDRE promoter. VDR overexpression or silencing technology was used to analyze whether VDR plays a role in promoting intestinal barrier repair, and to determine which region of VDR plays a role in berberine-regulated intestinal TJPs. RESULTS: The IBS-D rat model was successfully constructed and the symptoms were improved by berberine in a dose-dependent manner (P<0.05). The activity of VDRE promoter was also effectively promoted by berberine (P<0.05). Berberine increased the expression of TJPs in IBS-D CECs (P<0.05). VDR expression was significantly increased after transfection of different domains of VDR when compared to normal control and basic plasmid groups (all P<0.05). RT-qPCR and Western blot results showed that compared with the blank group, expressions of occludin and zonula occludens-1 were significantly higher in VDR containing groups (all P<0.05). Berberine plus pCMV-Myc-VDR-N group exerted the highest expression levels of occludin and zonula occludens-1 (P<0.05). CONCLUSION: Berberine enhances intestinal mucosal barrier function of IBS-D rats by promoting VDR activity, and the main site of action is the N-terminal region of VDR.


Assuntos
Berberina , Síndrome do Intestino Irritável , Ratos , Animais , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Função da Barreira Intestinal , Ocludina/genética , Ocludina/metabolismo , Privação Materna , Diarreia , Mucosa Intestinal
4.
Int Immunopharmacol ; 125(Pt A): 111131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149572

RESUMO

BACKGROUND: Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. METHODS: HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. RESULTS: Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. CONCLUSION: 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.


Assuntos
Colite , Humanos , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Inflamação/tratamento farmacológico , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Colecalciferol/uso terapêutico , Estresse Oxidativo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Hidroximetilglutaril-CoA Sintase
5.
Sci Rep ; 13(1): 17696, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848505

RESUMO

Vitamin D plays a central role in maintaining calcium, phosphorus, and bone homeostasis in close interaction with the parathyroid hormone. Obesity is a significant health problem worldwide, particularly in developed nations. The current study was carried out to investigate the possible relationship between body mass index (BMI) elevation and differentiation in 25-hydroxyvitamin D (VD), vitamin D receptor (VDR) gene expression, and genetic polymorphism besides oxidative stress in adult Egyptian individuals. This was done to explore the mechanisms underlying the suggested role of the VD/VDR complex in the pathogenesis of obesity. A total of 70 subjects (30 obese, 25 overweight, and 15 normal, age: 20-50 years, without other chronic diseases) were selected. The study focused on the determination of VD, VDR gene polymorphism, VDR gene expression, alkaline phosphatase, calcium, phosphorus, glucose, lipid profile, oxidative stress including, oxidant (malondialdehyde), and anti-oxidants (reduced glutathione and superoxide dismutase). The results showed that elevation in BMI led to the percentage of the Ff 'allele' becoming predominant, while the percentage of the FF 'allele' was in the normal BMI range. Also, BMI elevation caused significant reductions in VD and VDR expression, with significant elevations in alkaline phosphatase and the levels of calcium and phosphate in serum. Also, oxidative stress increases with increasing BMI. Elevation in BMI causes a reduction in VD concentration and VDR gene expression levels. Also, the percentage of heterozygous mutant genotype Ff 'allele' is predominantly in the obese human, in contrast to normal subjects, where the percentage of homozygous wild genotype FF 'allele' is predominant. In general, the genetic expression and polymorphism of VD and VDR can be used as a genetic marker for predisposition, diagnosis, prognosis, and progression of obesity.


Assuntos
Índice de Massa Corporal , Obesidade , Estresse Oxidativo , Receptores de Calcitriol , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Cálcio da Dieta , Egito , Expressão Gênica , Genótipo , Obesidade/genética , Obesidade/metabolismo , Estresse Oxidativo/genética , Fósforo , Polimorfismo Genético , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/genética , Vitamina D/metabolismo
6.
Res Vet Sci ; 164: 105044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806098

RESUMO

Cadmium (Cd) is toxic non-essential heavy metal that precipitates adverse health effects in humans and animals, but the effect of Cd on lymph node toxicity of piglets is still unclear. In order to explore the possible molecular mechanism of Cd toxicity to lymph nodes of piglets, ten 6-week-old male weaned piglets were randomly divided into two groups, C group and Cd group. Group C was fed with basal diet, while group Cd was fed with basal diet supplemented with CdCl2 (20 mg/kg) for 40 days, the pigs were euthanized and the mesenteric, inguinal and submandibular lymph nodes (MLN, ILN, SLN) were collected. The results indicated that Cd could induce the inflammatory cell infiltration, microvascular hemorrhage, microthrombosis and cell necrosis in MLN, ILN and SLN of piglets, induced Cytochrome P450 proteins (CYP1A1、CYP2E1、CYP2A1 and CYP3A2) mRNA levels and the protein levels of Vitamin D receptor (VDR) and cAMP response element binding protein 1 (CREB1). In addition, Cd exposure upregulated the mRNA and protein levels of dynamin-related protein 1 (DRP1), receptor-interacting protein kinase 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and increased tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), interleukin-2 (IL-2), interleukin-4 (IL-4), cyclooxygenase 2 (COX-2) protein levels, and the damage degree of three kinds of lymph nodes was similar after Cd exposure. In general, these results manifest that Cd exposure regulates VDR/CREB1 pathway, activates CYP450s, induces necroptosis of lymph nodes, and leads to inflammation.


Assuntos
Cádmio , Doenças dos Suínos , Suínos , Animais , Masculino , Cádmio/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Necroptose , Receptores de Calcitriol/metabolismo , RNA Mensageiro/metabolismo , Doenças dos Suínos/induzido quimicamente , Linfonodos/patologia
7.
J Steroid Biochem Mol Biol ; 232: 106331, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244301

RESUMO

The role of vitamin D3 and its metabolites in cancer and especially as a treatment option has been widely disputed. Clinicians noting low serum 25-hydroxyvitamin D3 [25(OH)D3] levels in their patients, recommend vitamin D3 supplementation as a method of reducing the risk of cancer; however, data supporting this are inconsistent. These studies rely on systemic 25(OH)D3 as an indicator of hormone status, but 25(OH)D3 is further metabolized in the kidney and other tissues under regulation by several factors. This study examined if breast cancer cells also possess the ability to metabolize 25(OH)D3, and if so, whether the resulting metabolites are secreted locally; if this ability reflects ERα66 status; and if they possess vitamin D receptors (VDR). To address this question, estrogen receptor alpha (ERα) positive (MCF-7) and ERα negative (HCC38 and MDA-MB-231) breast cancer cell lines were examined for expression of ERα66, ERα36, CYP24A1, CYP27B1, and VDR as well as for local production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after treatment with 25(OH)D3. The results showed that independent of ER status, breast cancer cells express the enzymes CYP24A1 and CYP27B1, which are responsible for converting 25(OH)D3 into its dihydroxylated forms. Moreover, these metabolites are produced at levels comparable to the levels observed in blood. They are positive for VDR, indicating that they can respond to 1α,25(OH)2D3, which can upregulate CYP24A1. These findings suggest that vitamin D metabolites may contribute to the tumorigenicity of breast cancer via autocrine and/or paracrine mechanisms.


Assuntos
Neoplasias da Mama , Colecalciferol , Humanos , Feminino , Colecalciferol/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo
8.
Gene ; 870: 147388, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37024063

RESUMO

Chronic hematogenous osteomyelitis (CHOM) is a common bone disease characterized by the development of sequestra after bacterial infection. Emerging evidence has shown that vitamin D (VD) deficiency raises the risk of osteomyelitis, but the underlying mechanisms remain obscure. Here, we establish a CHOM model in VD diet-deficient mice by intravenous inoculation of Staphylococcus aureus. Whole-genome microarray analyses using osteoblast cells isolated from sequestra reveal significant downregulation of SPP1 (secreted phosphoprotein 1). Molecular basis investigations show that VD sufficiency activates the VDR/RXR (VD receptor/retinoid X receptor) heterodimer to recruit NCOA1 (nuclear receptor coactivator 1) and transactivate SPP1 in healthy osteoblast cells. Secreted SPP1 binds to the cell surface molecule CD40 to activate serine/threonine-protein kinase Akt1, which then phosphorylates forkhead box O3a (FOXO3a), blocking FOXO3a-mediated transcription. By contrast, VD deficiency impairs the NCOA1-VDR/RXR-mediated overexpression of SPP1, leading to the inactivation of Akt1 and the accumulation of FOXO3a. FOXO3a then upregulates the expression of the apoptotic genes BAX (Bcl2-associated X-protein), BID (BH3 interacting death domain), and BIM (Bcl2-interacting mediator of cell death), to induce apoptosis. Administration of the NCOA1 inhibitor gossypol to the CHOM mice also promotes the occurrence of sequestra. VD supplementation can reactivate the SPP1-dependent antiapoptotic signaling and improve the outcomes of CHOM. Collectively, our data reveal that VD deficiency promotes bone destruction in CHOM by the removal of SPP1-dependent antiapoptotic signaling.


Assuntos
Osteomielite , Deficiência de Vitamina D , Camundongos , Animais , Osteopontina , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Apoptose , Receptores X de Retinoides , Proteínas Proto-Oncogênicas c-bcl-2 , Vitamina D/farmacologia , Vitamina D/metabolismo
9.
J Steroid Biochem Mol Biol ; 231: 106308, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054849

RESUMO

In this review, we summarize the most recent advances in vitamin D cancer research to provide molecular clarity, as well as its translational trajectory across the cancer landscape. Vitamin D is well known for its role in regulating mineral homeostasis; however, vitamin D deficiency has also been linked to the development and progression of a number of cancer types. Recent epigenomic, transcriptomic, and proteomic studies have revealed novel vitamin D-mediated biological mechanisms that regulate cancer cell self-renewal, differentiation, proliferation, transformation, and death. Tumor microenvironmental studies have also revealed dynamic relationships between the immune system and vitamin D's anti-neoplastic properties. These findings help to explain the large number of population-based studies that show clinicopathological correlations between circulating vitamin D levels and risk of cancer development and death. The majority of evidence suggests that low circulating vitamin D levels are associated with an increased risk of cancers, whereas supplementation alone or in combination with other chemo/immunotherapeutic drugs may improve clinical outcomes even further. These promising results still necessitate further research and development into novel approaches that target vitamin D signaling and metabolic systems to improve cancer outcomes.


Assuntos
Antineoplásicos , Neoplasias , Deficiência de Vitamina D , Humanos , Vitamina D/metabolismo , Proteômica , Vitaminas/uso terapêutico , Neoplasias/tratamento farmacológico , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Receptores de Calcitriol/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902107

RESUMO

Vitamin D (VitD) and its receptor (VDR) have been intensively investigated in many cancers. As knowledge for head and neck cancer (HNC) is limited, we investigated the (pre)clinical and therapeutic relevance of the VDR/VitD-axis. We found that VDR was differentially expressed in HNC tumors, correlating to the patients' clinical parameters. Poorly differentiated tumors showed high VDR and Ki67 expression, whereas the VDR and Ki67 levels decreased from moderate to well-differentiated tumors. The VitD serum levels were lowest in patients with poorly differentiated cancers (4.1 ± 0.5 ng/mL), increasing from moderate (7.3 ± 4.3 ng/mL) to well-differentiated (13.2 ± 3.4 ng/mL) tumors. Notably, females showed higher VitD insufficiency compared to males, correlating with poor differentiation of the tumor. To mechanistically uncover VDR/VitD's pathophysiological relevance, we demonstrated that VitD induced VDR nuclear-translocation (VitD < 100 nM) in HNC cells. RNA sequencing and heat map analysis showed that various nuclear receptors were differentially expressed in cisplatin-resistant versus sensitive HNC cells including VDR and the VDR interaction partner retinoic acid receptor (RXR). However, RXR expression was not significantly correlated with the clinical parameters, and cotreatment with its ligand, retinoic acid, did not enhance the killing by cisplatin. Moreover, the Chou-Talalay algorithm uncovered that VitD/cisplatin combinations synergistically killed tumor cells (VitD < 100 nM) and also inhibited the PI3K/Akt/mTOR pathway. Importantly, these findings were confirmed in 3D-tumor-spheroid models mimicking the patients' tumor microarchitecture. Here, VitD already affected the 3D-tumor-spheroid formation, which was not seen in the 2D-cultures. We conclude that novel VDR/VitD-targeted drug combinations and nuclear receptors should also be intensely explored for HNC. Gender-specific VDR/VitD-effects may be correlated to socioeconomic differences and need to be considered during VitD (supplementation)-therapies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Terapia de Alvo Molecular , Receptores de Calcitriol , Vitamina D , Vitaminas , Feminino , Humanos , Masculino , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/uso terapêutico , Antígeno Ki-67/metabolismo , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
11.
J Nutr Biochem ; 117: 109319, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963728

RESUMO

Vitamin D (VD) has been used to prevent nonalcoholic fatty liver disease (NAFLD), a condition of lipotoxicity associated with a defective metabolism and function of this vitamin. Different forms of VD are available and can be used for this scope, but their effects on liver cell lipotoxicity remain unexplored. In this study we compared a natural formulation rich in VD2 (Shiitake Mushroom extract or SM-VD2) with a synthetic formulation containing pure VD3 (SV-VD3) and the bioactive metabolite 1,25(OH)2-D3. These were investigated in chemoprevention mode in human HepaRG liver cells supplemented with oleic and palmitic acid to induce lipotoxicity. All the different forms of VD showed similar efficacy in reducing the levels of lipotoxicity and the changes that lipotoxicity induced on the cellular transcriptome. However, the three forms of VD generated different gene fingerprints suggesting diverse, even if functionally convergent, cytoprotective mechanisms. Main differences were (1) the number of differentially expressed genes (SV-VD3 > 1,25[OH]2-D3 > SM-VD2), (2) their identity that demonstrated significant gene homology between SM-VD2 and 1,25(OH)2-D3, and (3) the number and type of biological functions identified by ingenuity pathway analysis as relevant to liver metabolism and cytoprotection annotations. Immunoblot confirmed a different response of VDR and other VDR-related proteins to natural and synthetic VD formulations, including FXR, PXR, PPARγ/PGC-1α, and CYP3A4 and CYP24A1. In conclusion, different responses of the cellular transcriptome drive the cytoprotective effect of natural and synthetic formulations of VD in the free fatty acid-induced lipotoxicity of human hepatocytes.


Assuntos
Receptores de Calcitriol , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcriptoma , Hepatócitos/metabolismo , Vitaminas/farmacologia , Vitamina D3 24-Hidroxilase/genética
12.
Cells ; 12(4)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831327

RESUMO

The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Receptores de Calcitriol/metabolismo , Doença de Parkinson/genética , Vitamina D/metabolismo , Vitaminas
13.
Vitam Horm ; 121: 293-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707138

RESUMO

Although several recent studies have shown that vitamin D supplementation beneficially decreases oxidative stress parameters, there is no consensus on this subject in humans. Thus the role of vitamin D supplementation has recently become a controversial topic because large intervention studies in humans have not shown significant benefits. These studies have indicated that supplementation with precursor forms of active vitamin D has no effect on all-cause mortality, cannot reduce the fracture risk of the elderly, cannot reduce the incidence of cancer or cardiovascular disease in the elderly, and cannot significantly reduce the incidence risk of diabetes in the elderly. However, a link between several age-related diseases and enhanced oxidative stress has been found in mice with insufficient or deficient 1,25-dihydroxyvitamin D (1,25(OH)2D), the active form of vitamin D, which indicates that reduced active vitamin D accelerates aging and age-related diseases by increasing oxidative stress. Furthermore, supplementation of exogenous 1,25(OH)2D3, or antioxidants, could dramatically postpone aging, prevent osteoporosis and spontaneous tumor development induced by 1,25(OH)2D insufficiency or deficiency, by inhibiting oxidative stress. Mechanistically, the antioxidative effects of 1,25(OH)2D3 are carried out via the vitamin D receptor (VDR) by activation of the Nrf2 oxidative stress response pathway though transcriptional or posttranscriptional activation of Nrf2 or transcriptional upregulation of Sirt1 and Bmi1 expression. Whether discrepancies between studies in humans and in mice reflect the different forms of vitamin D examined remains to be determined.


Assuntos
Fator 2 Relacionado a NF-E2 , Vitamina D , Humanos , Camundongos , Animais , Idoso , Vitamina D/farmacologia , Vitamina D/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Vitaminas/farmacologia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Estresse Oxidativo , Envelhecimento , Antioxidantes/farmacologia
14.
J Bone Miner Metab ; 41(1): 41-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36385193

RESUMO

INTRODUCTION: This study sought to examine the effect of vitamin D3 (VD3) 3200 IU/d, calcifediol (HyD) 20mcg/d, or placebo on intramyonuclear vitamin D receptor (VDR) concentration, muscle fiber cross-sectional area (FCSA), and muscle satellite cell activation. MATERIALS AND METHODS: It was conducted on a subset of the VD3 (n = 12), HyD (n = 11), and placebo (n = 13) groups who participated in the 6-month randomized controlled HyD Osteopenia Study in postmenopausal women. Baseline and 6-month vastus lateralis muscle cross sections were probed for VDR, fiber type I and II, and PAX7 (satellite cell marker) using immunofluorescence. RESULTS: Baseline mean ± SD age was 61 ± 4 years and serum 25-hydroxyvitamin D (25OHD) level was 55.1 ± 22.8 nmol/L. Baseline characteristics did not differ significantly by group. Six-month mean ± SD 25OHD levels were 138.7 ± 22.2 nmol/L (VD3), 206.8 ± 68.8 nmol/L (HyD), and 82.7 ± 36.1 nmol/L (placebo), ANOVA P < 0.001. There were no significant group differences in 6-month change in VDR concentration (ANOVA P = 0.227). Mean ± SD percent 6-month changes in type I FCSA were 20.5 ± 32.7% (VD3), - 6.6 ± 20.4% (HyD), and - 0.3 ± 14.0% (placebo, ANOVA P = 0.022). Type II FCSA or PAX7 concentration did not change significantly by group (all P > 0.358). CONCLUSION: This study demonstrated no significant change in intramyonuclear VDR in response to either form of vitamin D vs. placebo. Type I FCSA significantly increased with VD3, but not with HyD at 6 months. As type I fibers are more fatigue resistant than type II, enlargement in type I suggests potential for improved muscle endurance. Although HyD resulted in the highest 25OHD levels, no skeletal muscle benefits were noted at these high levels. CLINICAL TRIAL: NCT02527668.


Assuntos
Calcifediol , Colecalciferol , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Músculo Esquelético/metabolismo , Suplementos Nutricionais , Método Duplo-Cego
15.
Cell Biol Toxicol ; 39(3): 885-906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34637036

RESUMO

Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.


Assuntos
NF-kappa B , Receptores de Calcitriol , Humanos , NF-kappa B/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Colecalciferol/farmacologia , Inflamação/genética , Apoptose
16.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555202

RESUMO

Vitamin D takes part in the functioning of many processes that ensure the homeostasis of the body. In orthopedics, it is indicated as an inseparable element ensuring proper bone growth and functioning, and its deficiencies are indicated in various diseases, mainly in the proper structure and function of the skeleton. In this review, we focus on the most important components of the vitamin D metabolic pathway, in correlation with selected orthopedic conditions. Records were obtained from the PubMed database in a timeline of 2010-2022. The keywords were as follows: vitamin D/cholesterol/vitamin D binding protein/ VDBP/Cytochrome/CYP24A1/CYP 27B1/Vitamin D receptor/VDR/ + diseases (ACL reconstruction, rotator cuff, arthroplasty knee/hip/shoulder). The recent original studies were analyzed, discussed, and the most important data were shown. The vast majority of articles concern the metabolite of vitamin D (25(OH)D), which is measured as a standard in diagnostic laboratories. Even though there is a lot of valuable information in the literature, we believe that the other elements of the vitamin D pathway also deserve attention and suggest their research in correlation with orthopedic disorders to supplement the missing knowledge on this topic.


Assuntos
Ortopedia , Vitamina D , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Redes e Vias Metabólicas , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo , Vitaminas
17.
Anticancer Res ; 42(10): 5043-5048, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36192006

RESUMO

BACKGROUND/AIM: Identify potential mechanisms involving gene expression changes through which vitamin D supplementation could be beneficial in preventing adverse COVID-19 outcomes. MATERIALS AND METHODS: We performed a literature review to identify differentially expressed genes (DEGs) in the blood between severe and mild COVID-19 patients. We compared these with the top DEGs induced by 6 months of 10,000 IU/day vitamin D supplementation in healthy adults who were vitamin D deficient/insufficient. We used bioinformatic tools to look for a vitamin D response element (VDRE) in DEGs. RESULTS: FOLR3, RGS1, GPR84, and LRRN3 were the most significantly altered genes by 6 months of 10,000 IU/day vitamin D supplementation whose expression levels were also involved in COVID-19 severity. FOLR3 and GPR84 were found to be consistently up-regulated and RGS1 and LRRN3 consistently down-regulated in severe COVID-19 infection. FOLR3 and LRRN3 were down-regulated and RGS1 and GPR84 were up-regulated by 10,000 IU/day vitamin D supplementation. CONCLUSION: FOLR3 and RGS1 are expressed in neutrophils and lymphocytes, respectively. Vitamin D supplementation may decrease the neutrophil-lymphocyte ratio as has been reported in patients admitted with severe symptoms. There is evidence that vitamin D directly influences the expression of the RGS1 gene through vitamin D receptor binding. A potential negative VDRE (nVDRE) in an intron of the FOLR3 gene was found, which was homologous with two known nVDREs. Combined with other transcription factor elements near the newly identified nVDRE, these observations may explain the mechanism by which vitamin D regulates these genes, thus influencing COVID-19 outcomes.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas de Transporte , Deficiência de Vitamina D , Vitamina D , Adulto , Proteínas de Transporte/genética , Ácido Fólico , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D/uso terapêutico , Deficiência de Vitamina D/prevenção & controle , Vitaminas/uso terapêutico
18.
Genes (Basel) ; 13(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36292748

RESUMO

To evaluate the prevention and treatment effect of a Chinese herbal formula (CHF) on the bone disease of Cobb broiler chickens, compare its efficacy with Bisphosphonates (BPs), and provide a theoretical basis for studying the nutritional regulation technology of CHF to improve the bone characteristics of broiler chickens. In this study, 560 one-day-old Cobb broiler chickens were examined for the influence of Chinese herbal formula (CHF) and Bisphosphonates (BPs). Different doses of CHF and BPs were added to the diet, and the 30- and 60-day-old live weight, tibial bone strength, the microstructure of the distal femur cancellous bone, blood biochemical indexes related to bone metabolism, and genes related to bone metabolism were determined and analyzed. The results showed that the live weight of Cobb broilers fed with CHF and BPs in the diet was as follows: The live weight of the CHF group was higher than that of the normal control (NC) group, while the live weight of the BPs group was lower than that of the NC group; the CHF and BPs improved the bone strength of Cobb broilers and increased the elastic modulus, yield strength, and maximum stress of the tibia. CHF and BPs increased the cancellous bone mineral density (BMD), bone tissue ratio (BV/TV), bone surface area tissue volume ratio (BS/TV), bone trabecular thickness (Tb.Th), and bone trabecular number (Tb.N) in the distal femur, and decreased the bone surface area bone volume ratio (BS/BV) and bone trabecular separation (Tb.Sp). Thus, the microstructure of the bone tissue of the distal femur was improved to a certain extent. Both the CHF and the BPs also increased the serum levels of the vitamin D receptor (VDR), osteoprotegerin (OPG), and alkaline phosphatase (ALP), and decreased the content of osteocalcin (OT). Meanwhile, CHF and BPs upregulated the expression of osteogenic genes (BMP-2, OPG, Runx-2) to promote bone formation and downregulated the expression of osteoclastic genes (RANK, RANKL, TNF-α) to inhibit bone resorption, thus affecting bone metabolism. Conclusion: The CHF could improve the skeletal characteristics of Cobb broilers by upregulating the expression of bone-forming-related genes and downregulating the expression of bone-breaking-related genes, thus preventing and controlling skeletal diseases in Cobb broilers. Its effect was comparable to that of BPs. Meanwhile, the CHF-H group achieved the best results in promoting the growth and improvement of the skeletal characteristics of Cobb broilers based on the live weight and skeletal-characteristics-related indexes.


Assuntos
Galinhas , Osteoprotegerina , Animais , Osteoprotegerina/genética , Galinhas/metabolismo , Receptores de Calcitriol/metabolismo , Osteocalcina , Fosfatase Alcalina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osso e Ossos/metabolismo , Difosfonatos , China
19.
Front Endocrinol (Lausanne) ; 13: 992666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246903

RESUMO

The actions of several bone-mineral ion regulators, namely PTH, FGF23, Klotho and 1,25(OH)2 vitamin D (1,25(OH)2D), control calcium and phosphate metabolism, and each of these molecules has additional biological effects related to cell signaling, metabolism and ultimately survival. Therefore, these factors are tightly regulated at various levels - genetic, epigenetic, protein secretion and cleavage. We review the main determinants of mineral homeostasis including well-established genetic and post-translational regulators and bring attention to the epigenetic mechanisms that affect the function of PTH, FGF23/Klotho and 1,25(OH)2D. Clinically relevant epigenetic mechanisms include methylation of cytosine at CpG-rich islands, histone deacetylation and micro-RNA interference. For example, sporadic pseudohypoparathyroidism type 1B (PHP1B), a disease characterized by resistance to PTH actions due to blunted intracellular cAMP signaling at the PTH/PTHrP receptor, is associated with abnormal methylation at the GNAS locus, thereby leading to reduced expression of the stimulatory G protein α-subunit (Gsα). Post-translational regulation is critical for the function of FGF-23 and such modifications include glycosylation and phosphorylation, which regulate the cleavage of FGF-23 and hence the proportion of available FGF-23 that is biologically active. While there is extensive data on how 1,25(OH)2D and the vitamin D receptor (VDR) regulate other genes, much more needs to be learned about their regulation. Reduced VDR expression or VDR mutations are the cause of rickets and are thought to contribute to different disorders. Epigenetic changes, such as increased methylation of the VDR resulting in decreased expression are associated with several cancers and infections. Genetic and epigenetic determinants play crucial roles in the function of mineral factors and their disorders lead to different diseases related to bone and beyond.


Assuntos
Receptores de Calcitriol , Vitamina D , Cálcio/metabolismo , Citosina , Epigênese Genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glucuronidase/metabolismo , Histonas/metabolismo , Minerais/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitaminas
20.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142545

RESUMO

Porcine epidemic diarrhea virus (PEDV) infection causes watery diarrhea and vomiting in piglets. The pathogenesis of PEDV infection is related to intestinal inflammation. It is known that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent anti-inflammatory activity, but it is unknown whether 1,25(OH)2D3 can inhibit the PEDV-induced inflammatory response and the underlying mechanism. We used transcriptome analysis, gene and protein expression, RNA interference and overexpression, and other techniques to study the anti-inflammatory effects of 1,25(OH)2D3 on PEDV infection in IPEC-J2 cells. The results showed that interleukin 19 (IL-19) and C-C motif chemokine ligand 20 (CCL20) gene expression were enhanced with the increase in PEDV infection time in IPEC-J2 cells. Interestingly, 1,25(OH)2D3 supplementation obviously inhibited IL-19 and CCL20 expression induced by PEDV. Meanwhile, we also found that 1,25(OH)2D3 reduced p-NF-κB, p-STAT1, and p-STAT3 protein levels induced by PEDV at 24 h post-infection. IκBα and SOCS3, NF-κB, and STAT inhibitor respectively, were increased by 1,25(OH)2D3 supplementation upon PEDV infection. In addition, 1,25(OH)2D3 supplementation inhibited ISG15 and MxA expression induced by PEDV. Although 1,25(OH)2D3 suppressed the JAK/STAT signal pathway and antiviral gene expression, it had no significant effects on PEDV replication and IFN-α-induced antiviral effects. In addition, when the vitamin D receptor (VDR) was silenced by siRNA, the anti-inflammatory effect of 1,25(OH)2D3 was inhibited. Meanwhile, the overexpression of VDR significantly downregulated IL-19 and CCL20 expression induced by PEDV infection. Together, our results provide powerful evidence that 1,25(OH)2D3 could alleviate PEDV-induced inflammation by regulating the NF-κB and JAK/STAT signaling pathways through VDR. These results suggest that vitamin D could contribute to inhibiting intestinal inflammation and alleviating intestinal damage in PEDV-infected piglets, which offers new approaches for the development of nutritional strategies to prevent PEDV infection in piglets.


Assuntos
Vírus da Diarreia Epidêmica Suína , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Linhagem Celular , Células Epiteliais/metabolismo , Inflamação , Ligantes , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA Interferente Pequeno/farmacologia , Receptores de Calcitriol/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Suínos , Vitamina D/análogos & derivados , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA