Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Adv Biol Regul ; 79: 100774, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422460

RESUMO

Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.


Assuntos
Canabinoides/administração & dosagem , Neoplasias/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Canabinoides/química , Cannabis/química , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Extratos Vegetais/química , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
2.
J Crohns Colitis ; 13(4): 525-535, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30418525

RESUMO

Cannabis sativa and its extracts have been used for centuries, both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease [IBD], such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date, the largest study being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.


Assuntos
Canabinoides/uso terapêutico , Cannabis , Endocanabinoides/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fitoterapia , Receptores de Canabinoides/metabolismo , Administração por Inalação , Analgésicos não Narcóticos/uso terapêutico , Animais , Dronabinol/uso terapêutico , Endocanabinoides/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Extratos Vegetais/uso terapêutico , Polimorfismo de Nucleotídeo Único , Receptores de Canabinoides/genética
3.
Mol Aspects Med ; 64: 68-78, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290200

RESUMO

Physical activity is an important lifestyle factor for growth, development, and sustained health throughout life. In recent years, the benefits of physical activity have drawn more attention to its physiological effects on the body, including well-being. The endocannabinoid system (ECS) has emerged as a focal point to ascertain the mechanisms for how exercise benefits the body and how it reduces or controls pain. The ECS, its ligands [the endocannabinoids (eCB)], receptors (CB1 and CB2), enzymes for the synthesis and degradation of eCB, and the polyunsaturated fatty acids (PUFA) that serve as substrates, comprise a powerful biological organization of multiple controls that affects mood, inflammation, pain, and other neurological aspects of the central nervous system and peripheral nervous system. Recently, investigators have reported increases in circulating levels of eCB after exercise, with some eCB exerting analgesic effects from exercise. The focus of this review is to discuss evidence for the role of eCB and the complexities of the ECS in exercise and pain. Some aspects presented herein are production of eCB and activation of the cannabinoid receptors in the brain following exercise; eCB, pain, and physical activity; oxylipins; and joint pain. Future research on the ECS must include mechanistic approaches to endocannabinoid signaling and explain the role of dietary PUFA in altering signaling of the receptors that affects pain. Additionally, how other types of exercise, such as Tai Chi, which is reported to improve well-being, should be investigated to ascertain if changes in eCB mediate the mind and body benefits of Tai Chi. As we age, exercise in the form of play has evolved with the exploration of our body from walking to running, recreational, and competitive sports, to midlife physical activity focusing on maintaining fitness and a healthy body weight. Furthermore, exercise has been a target of investigation to explore various hypotheses to explain the mechanisms for cognitive benefits in the young and in older adults. The science of exercise has matured to a level of importance in the life cycle to reduce pain with aging and include new investigations on the ECS to explain its role in well-being and improved quality of life in later years.


Assuntos
Envelhecimento/genética , Endocanabinoides/genética , Exercício Físico/fisiologia , Dor/genética , Envelhecimento/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Endocanabinoides/metabolismo , Humanos , Dor/fisiopatologia , Qualidade de Vida , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais/genética
4.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29533978

RESUMO

The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.


Assuntos
Sistema Nervoso Central/metabolismo , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Receptores de Canabinoides/genética , Transdução de Sinais
5.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385102

RESUMO

This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.


Assuntos
Doenças das Artérias Carótidas , Lobo Frontal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Canabinoides/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Estilbenos/farmacologia , Animais , Arteriopatias Oclusivas , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Receptores de Canabinoides/genética , Traumatismo por Reperfusão/metabolismo , Resveratrol , Estilbenos/uso terapêutico
6.
Br J Pharmacol ; 174(16): 2662-2681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677901

RESUMO

BACKGROUND AND PURPOSE: Our initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti-metabolite approach to identify drugs that target spasticity. EXPERIMENTAL APPROACH: Following the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue-based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans. KEY RESULTS: VSN16R had nanomolar activity in tissue-based, functional assays and dose-dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000-fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1 /CB2 /GPPR55 cannabinoid-related receptors in receptor-based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium-activated potassium (BKCa ) channel. Drug-induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural-excitability and controlling spasticity. CONCLUSIONS AND IMPLICATIONS: We identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper-excitability in spasticity.


Assuntos
Benzamidas/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Espasticidade Muscular/tratamento farmacológico , Animais , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Cães , Método Duplo-Cego , Endocanabinoides/química , Endocanabinoides/farmacocinética , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Feminino , Hepatócitos/metabolismo , Isomerismo , Macaca , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Knockout , Coelhos , Ratos Sprague-Dawley , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/genética , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
7.
J Physiol Biochem ; 73(3): 335-347, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28283967

RESUMO

The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.


Assuntos
Dieta Hiperlipídica , Endocanabinoides/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Animais , Ingestão de Energia , Expressão Gênica , Masculino , Condicionamento Físico Animal , Ratos Wistar , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
8.
Br J Pharmacol ; 172(1): 142-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25205418

RESUMO

BACKGROUND AND PURPOSE: Palmitoylethanolamide (PEA) acts via several targets, including cannabinoid CB1 and CB2 receptors, transient receptor potential vanilloid type-1 (TRPV1) ion channels, peroxisome proliferator-activated receptor alpha (PPAR α) and orphan G protein-coupled receptor 55 (GRR55), all involved in the control of intestinal inflammation. Here, we investigated the effect of PEA in a murine model of colitis. EXPERIMENTAL APPROACH: Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Inflammation was assessed by evaluating inflammatory markers/parameters and by histology; intestinal permeability by a fluorescent method; colonic cell proliferation by immunohistochemistry; PEA and endocannabinoid levels by liquid chromatography mass spectrometry; receptor and enzyme mRNA expression by quantitative RT-PCR. KEY RESULTS: DNBS administration caused inflammatory damage, increased colonic levels of PEA and endocannabinoids, down-regulation of mRNA for TRPV1 and GPR55 but no changes in mRNA for CB1 , CB2 and PPARα. Exogenous PEA (i.p. and/or p.o., 1 mg·kg(-1) ) attenuated inflammation and intestinal permeability, stimulated colonic cell proliferation, and increased colonic TRPV1 and CB1 receptor expression. The anti-inflammatory effect of PEA was attenuated or abolished by CB2 receptor, GPR55 or PPARα antagonists and further increased by the TRPV1 antagonist capsazepine. CONCLUSIONS AND IMPLICATIONS: PEA improves murine experimental colitis, the effect being mediated by CB2 receptors, GPR55 and PPARα, and modulated by TRPV1 channels.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Etanolaminas/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Administração Oral , Amidas , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Benzenossulfonatos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Etanolaminas/administração & dosagem , Etanolaminas/farmacocinética , Etanolaminas/farmacologia , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Ácidos Oleicos/metabolismo , PPAR alfa/genética , Ácidos Palmíticos/administração & dosagem , Ácidos Palmíticos/farmacocinética , Ácidos Palmíticos/farmacologia , Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
9.
Eur J Pharmacol ; 735: 105-14, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24751709

RESUMO

The endocannabinoid system plays a role in regulation of vasoactivity in the peripheral vasculature; however, little is known about its role in regulation of the CNS microvasculature. This study investigated the pharmacology of cannabinoids and cannabimimetic lipids in the retinal microvasculature, a CNS vascular bed that is autoregulated. Vessel diameter (edge detector) and calcium transients (fura-2) were recorded from segments of retinal microvasculature isolated from adult, male Fischer 344 rats. Results showed that abnormal cannabidiol (Abn-CBD), an agonist at the putative endothelial cannabinoid receptor, CBe, inhibited endothelin 1 (ET-1) induced vasoconstriction in retinal arterioles. These actions of Abn-CBD were independent of CB1/CB2 receptors and were not mediated by agonists for GPR55 or affected by nitric oxide synthase (NOS) inhibition. However, the vasorelaxant effects of Abn-CBD were abolished when the endothelium was removed and were inhibited by the small Ca(2+)-sensitive K channel (SKCa) blocker, apamin. The effects of the endogenous endocannabinoid metabolite, N-arachidonyl glycine (NAGly), a putative agonist for GPR18, were virtually identical to those of Abn-CBD. GPR18 mRNA and protein were present in the retina, and immunohistochemistry demonstrated that GPR18 was localized to the endothelium of retinal vessels. These findings demonstrate that Abn-CBD and NAGly inhibit ET-1 induced vasoconstriction in retinal arterioles by an endothelium-dependent signaling mechanism that involves SKCa channels. The endothelial localization of GPR18 suggests that GPR18 could contribute to cannabinoid and lipid-mediated retinal vasoactivity.


Assuntos
Ácidos Araquidônicos/farmacologia , Endotelina-1/farmacologia , Glicina/análogos & derivados , Resorcinóis/farmacologia , Vasos Retinianos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Canabinoides , Lobo Frontal/metabolismo , Glicina/farmacologia , Lipídeos , Masculino , Microvasos , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344 , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Retina/efeitos dos fármacos , Retina/fisiologia , Vasos Retinianos/fisiologia
10.
CNS Neurosci Ther ; 20(9): 809-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24703394

RESUMO

AIMS: Cannabinoids afford neuroprotection in SOD1(G93A) mutant mice, an experimental model of amyotrophic lateral sclerosis (ALS). However, these mice have been poorly studied to identify alterations in those elements of the endocannabinoid system targeted by these treatments. Moreover, we studied the neuroprotective effect of the phytocannabinoid-based medicine Sativex(®) in these mice. METHODS: First, we analyzed the endocannabinoid receptors and enzymes in the spinal cord of SOD1(G93A) transgenic mice at a late stage of the disease. Second, 10-week-old transgenic mice were daily treated with an equimolecular combination of Δ(9) -tetrahydrocannabinol- and cannabidiol-enriched botanical extracts (20 mg/kg for each phytocannabinoid). RESULTS: We found a significant increase of CB2 receptors and NAPE-PLD enzyme in SOD1(G93A) transgenic males and only CB2 receptors in females. Pharmacological experiments demonstrated that the treatment of these mice with the Sativex(®) -like combination of phytocannabinoids only produced weak improvements in the progression of neurological deficits and in the animal survival, particularly in females. CONCLUSIONS: Our results demonstrated changes in endocannabinoid signaling, in particular a marked up-regulation of CB2 receptors, in SOD1(G93A) transgenic mice, and provide support that Sativex(®) may serve as a novel disease-modifying therapy in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Endocanabinoides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fosfolipase D/metabolismo , Extratos Vegetais/uso terapêutico , Receptores de Canabinoides/metabolismo , Medula Espinal/metabolismo , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Análise de Variância , Animais , Canabidiol , Dronabinol , Combinação de Medicamentos , Endocanabinoides/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos Transgênicos , Receptores de Canabinoides/genética , Fatores Sexuais , Superóxido Dismutase/genética
11.
Vitam Horm ; 91: 325-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23374723

RESUMO

A safe and effective antiobesity drug is needed to combat the global obesity epidemic. The discovery of cannabinoids from medicinal herbs has revealed the endocannabinoid system (ECS) in animals and humans, which regulates various physiological activities such as feeding, thermogenesis, and body weight (BW). Although cannabinoid receptors 1 (CB1) antagonists have shown antiobesity efficacies in animal models and in the clinic, they failed to establish as a treatment due to their psychological side effects. Recent studies indicate that CB1 in various peripheral tissues may mediate some of the therapeutic effects of CB1 antagonists, such as improved lipid and glucose homeostasis. It rationalizes the development of compounds with limited brain penetration, for minimizing the side effects while retaining the therapeutic efficacies. A survey of the literature has revealed some controversies about how the ECS affects obesity. This review summarizes the research progresses and discusses some future perspectives.


Assuntos
Endocanabinoides/metabolismo , Obesidade/metabolismo , Animais , Regulação da Expressão Gênica , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
12.
PLoS One ; 6(4): e18359, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21526169

RESUMO

BACKGROUND: The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. RESULTS: Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. CONCLUSION: The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may contribute to different aspects of the complex phenomenon of leech nerve regeneration, establishing an important base for future functional assays.


Assuntos
Hirudo medicinalis/metabolismo , Metabolismo dos Lipídeos , Regeneração Nervosa/fisiologia , Sistema Nervoso/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Axotomia , Canabinoides/metabolismo , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Embrião não Mamífero/metabolismo , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/patologia , Hirudo medicinalis/embriologia , Dados de Sequência Molecular , Sistema Nervoso/patologia , Peptídeos/química , Filogenia , Proteoma/metabolismo , Receptores de Canabinoides/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Mecânico , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
13.
Eur J Neurosci ; 32(5): 693-706, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21050275

RESUMO

A role for endocannabinoid signaling in neuronal morphogenesis as the brain develops has recently been suggested. Here we used the developing somatosensory circuit as a model system to examine the role of endocannabinoid signaling in neural circuit formation. We first show that a deficiency in cannabinoid receptor type 1 (CB(1)R), but not G-protein-coupled receptor 55 (GPR55), leads to aberrant fasciculation and pathfinding in both corticothalamic and thalamocortical axons despite normal target recognition. Next, we localized CB(1)R expression to developing corticothalamic projections and found little if any expression in thalamocortical axons, using a newly established reporter mouse expressing GFP in thalamocortical projections. A similar thalamocortical projection phenotype was observed following removal of CB(1)R from cortical principal neurons, clearly demonstrating that CB(1)R in corticothalamic axons was required to instruct their complimentary connections, thalamocortical axons. When reciprocal thalamic and cortical connections meet, CB(1)R-containing corticothalamic axons are intimately associated with elongating thalamocortical projections containing DGLß, a 2-arachidonoyl glycerol (2-AG) synthesizing enzyme. Thus, 2-AG produced in thalamocortical axons and acting at CB(1)Rs on corticothalamic axons is likely to modulate axonal patterning. The presence of monoglyceride lipase, a 2-AG degrading enzyme, in both thalamocortical and corticothalamic tracts probably serves to restrict 2-AG availability. In summary, our study provides strong evidence that endocannabinoids are a modulator for the proposed 'handshake' interactions between corticothalamic and thalamocortical axons, especially for fasciculation. These findings are important in understanding the long-term consequences of alterations in CB(1)R activity during development, a potential etiology for the mental health disorders linked to prenatal cannabis use.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Morfogênese/fisiologia , Vias Neurais/crescimento & desenvolvimento , Células Piramidais/crescimento & desenvolvimento , Receptor CB1 de Canabinoide/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/genética , Vias Neurais/embriologia , Técnicas de Rastreamento Neuroanatômico/métodos , Células Piramidais/embriologia , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/genética , Receptores de Canabinoides/fisiologia , Tálamo/embriologia
14.
Int Rev Neurobiol ; 88: 335-69, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19897083

RESUMO

Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the ECS plays in the retrograde signaling associated with cannabinoid inhibition of neurotransmitter release to the genetic basis of the effects of marijuana use and pharmacotherpeutic applications and limitations. Much evidence is provided for the complex CNR1 and CNR2 gene structures and their associated regulatory elements. Thus, understanding the ECS in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Humanos , Receptores de Canabinoides/genética
15.
Neurotherapeutics ; 6(4): 713-37, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19789075

RESUMO

Neuropathic pain is a debilitating form of chronic pain resulting from nerve injury, disease states, or toxic insults. Neuropathic pain is often refractory to conventional pharmacotherapies, necessitating validation of novel analgesics. Cannabinoids, drugs that share the same target as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychoactive ingredient in cannabis, have the potential to address this unmet need. Here, we review studies evaluating cannabinoids for neuropathic pain management in the clinical and preclinical literature. Neuropathic pain associated with nerve injury, diabetes, chemotherapeutic treatment, human immunodeficiency virus, multiple sclerosis, and herpes zoster infection is considered. In animals, cannabinoids attenuate neuropathic nociception produced by traumatic nerve injury, disease, and toxic insults. Effects of mixed cannabinoid CB(1)/CB(2) agonists, CB(2) selective agonists, and modulators of the endocannabinoid system (i.e., inhibitors of transport or degradation) are compared. Effects of genetic disruption of cannabinoid receptors or enzymes controlling endocannabinoid degradation on neuropathic nociception are described. Specific forms of allodynia and hyperalgesia modulated by cannabinoids are also considered. In humans, effects of smoked marijuana, synthetic Delta(9)-THC analogs (e.g., Marinol, Cesamet) and medicinal cannabis preparations containing both Delta(9)-THC and cannabidiol (e.g., Sativex, Cannador) in neuropathic pain states are reviewed. Clinical studies largely affirm that neuropathic pain patients derive benefits from cannabinoid treatment. Subjective (i.e., rating scales) and objective (i.e., stimulus-evoked) measures of pain and quality of life are considered. Finally, limitations of cannabinoid pharmacotherapies are discussed together with directions for future research.


Assuntos
Canabinoides/uso terapêutico , Neuralgia/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Canabinoides/efeitos adversos , Canabinoides/farmacologia , Doença Crônica , Modelos Animais de Doenças , Humanos , Neuralgia/etiologia , Neuralgia/fisiopatologia , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
16.
J Bodyw Mov Ther ; 12(2): 169-82, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19083670

RESUMO

The endocannabinoid (eCB) system, like the better-known endorphin system, consists of cell membrane receptors, endogenous ligands and ligand-metabolizing enzymes. Two cannabinoid receptors are known: CB(1) is principally located in the nervous system, whereas CB(2) is primarily associated with the immune system. Two eCB ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are mimicked by cannabis plant compounds. The first purpose of this paper was to review the eCB system in detail, highlighting aspects of interest to bodyworkers, especially eCB modulation of pain and inflammation. Evidence suggests the eCB system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, expression of the eCB system in myofascial tissues has not been established. The second purpose of this paper was to investigate the eCB system in fibroblasts and other fascia-related cells. The investigation used a bioinformatics approach, obtaining microarray data via the GEO database (www.ncbi.nlm.nih.gov/geo/). GEO data mining revealed that fibroblasts, myofibroblasts, chondrocytes and synoviocytes expressed CB(1), CB(2) and eCB ligand-metabolizing enzymes. Fibroblast CB(1) levels nearly equalled levels expressed by adipocytes. CB(1) levels upregulated after exposure to inflammatory cytokines and equiaxial stretching of fibroblasts. The eCB system affects fibroblast remodeling through lipid rafts associated with focal adhesions and dampens cartilage destruction by decreasing fibroblast-secreted metalloproteinase enzymes. In conclusion, the eCB system helps shape biodynamic embryological development, diminishes nociception and pain, reduces inflammation in myofascial tissues and plays a role in fascial reorganization. Practitioners wield several tools that upregulate eCB activity, including myofascial manipulation, diet and lifestyle modifications, and pharmaceutical approaches.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Fibroblastos/metabolismo , Síndromes da Dor Miofascial/metabolismo , Animais , Moduladores de Receptores de Canabinoides/genética , Biologia Computacional/métodos , Humanos , Síndromes da Dor Miofascial/genética , Nociceptores/metabolismo , Receptores de Canabinoides/genética
17.
Mol Neurobiol ; 36(1): 36-44, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17952648

RESUMO

The last quarter century has borne witness to great advances in both the detection and treatment of numerous cancers. Even so, malignancies of the central nervous system, especially high-grade astrocytomas, continue to thwart our best efforts toward effective chemotherapeutic strategies. With prognosis remaining bleak, the time for serious consideration of alternative therapies has arrived. Various preparations of the marijuana plant, Cannabis sativa, and related synthetic and endogenous compounds, may constitute just such an alternative. Cannabinoids, although much maligned historically for their psychotropic effects and clear abuse potential, have long been used medicinally and are now staging an impressive comeback, as recent studies have begun to explore their powerful anti-tumoral properties. In this study, we review in vitro and in vivo evidence supporting the use of cannabinoids for treatment of brain tumors. We further propose the continued intense investigation of cannabinoid efficacies as novel anti-cancer agents, especially in models recapitulating such properties within the unique environment of the brain.


Assuntos
Astrocitoma/tratamento farmacológico , Astrocitoma/imunologia , Canabinoides/uso terapêutico , Animais , Astrocitoma/genética , Astrocitoma/patologia , Canabinoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Microglia/efeitos dos fármacos , Receptores de Canabinoides/genética
18.
Yakugaku Zasshi ; 126(2): 67-81, 2006 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-16462096

RESUMO

Marijuana has been used as a traditional medicine and a pleasure-inducing drug for thousands of years around the world, especially in Asia. Delta(9)-tetrahydrocannabinol, major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of the cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous and inflammatory cells are demonstrated. Furthermore, the future development of therapeutic drugs coming from this endocannabinoid system are discussed.


Assuntos
Ácidos Araquidônicos , Glicerídeos , Receptores de Canabinoides , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/fisiologia , Desenho de Fármacos , Endocanabinoides , Glicerídeos/farmacologia , Glicerídeos/fisiologia , Humanos , Inflamação , Ligantes , Neurotransmissores , Alcamidas Poli-Insaturadas , Receptores de Canabinoides/genética , Receptores de Canabinoides/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA