RESUMO
BACKGROUND: Lung ischemia-reperfusion injury (IRI) is a form of acute lung injury characterized by nonspecific alveolar damage and lung edema due to robust inflammation. Little is known about the roles of specialized proresolving lipid mediators (SPMs) in lung IRI. Therefore, we aimed to evaluate the dynamic changes in endogenous SPMs during the initiation and resolution of lung IRI and to determine the effects of SPM supplementation on lung IRI. METHODS: We used a rat left hilar clamp model with 90 min of ischemia, followed by reperfusion. Dynamic changes in endogenous SPMs were evaluated using liquid chromatography-tandem mass spectrometry. RESULTS: Endogenous SPMs in the left lung showed a decreasing trend after 1 h of reperfusion. Oxygenation improved between 3 and 7 d following reperfusion; however, the level of endogenous SPMs remained low compared with that in the naïve lung. Among SPM receptors, only formyl peptide receptor type 2 (ALX/FPR2) gene expression in the left lung was increased 3 h after reperfusion, and the inflammatory cells were immunohistochemically positive for ALX/FPR2. Administration of aspirin-triggered (AT) resolvin D1 (AT-RvD1) and AT lipoxin A4 (AT-LXA4), which are agonistic to ALX/FPR2, immediately after reperfusion improved lung function, reduced inflammatory cytokine levels, attenuated lung edema, and decreased neutrophil infiltration 3 h after reperfusion. The effects of AT-RvD1 and AT-LXA4 were not observed after pretreatment with the ALX/FPR2 antagonist. CONCLUSIONS: The level of intrapulmonary endogenous SPMs decreased during lung IRI process and the administration of AT-RvD1 and AT-LXA4 prevented the exacerbation of lung injury via ALX/FPR2.
Assuntos
Receptores de Formil Peptídeo , Traumatismo por Reperfusão , Animais , Edema , Inflamação/prevenção & controle , Pulmão/metabolismo , Ratos , Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/metabolismo , Traumatismo por Reperfusão/prevenção & controleRESUMO
Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.
Assuntos
Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Chalconas/farmacologia , Chalconas/uso terapêutico , Cisplatino/efeitos adversos , Macrófagos/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Lipoxinas/antagonistas & inibidores , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Células Cultivadas , Chalconas/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Glycyrrhiza/química , Inflamação , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Fitoterapia , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Receptores de Lipoxinas/fisiologia , Regulação para Cima/efeitos dos fármacosRESUMO
Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.
Assuntos
Óleos Voláteis/química , Rhododendron/química , Flores/química , Células HL-60 , Humanos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Imunomodulação/efeitos dos fármacos , Monoterpenos/farmacologia , Neutrófilos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Folhas de Planta/química , Receptores de Formil Peptídeo/efeitos dos fármacos , Receptores de Formil Peptídeo/metabolismo , Rhododendron/metabolismo , Sesquiterpenos/farmacologiaRESUMO
Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure-activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quinoxalinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Psoriasis is a long-lasting inflammatory skin disease lacking proper cure. Dysregulated activation of neutrophils is a major pathogenic factor in psoriasis. Formyl peptide receptor 1 (FPR1) triggers neutrophil activation in response to bacteria- or mitochondria-derived N-formyl peptides, but its significance in neutrophilic psoriasis remains unknown. In this study, we discovered two derivatives of ursolic acid, 3ß-hydroxyurs-12,18-dien-28-oic acid (randialic acid B, RAB) and 3ß-hydroxyurs-12,19-dien-28-oic acid (tomentosolic acid, TA), as FPR1 inhibitors in human neutrophils with ability to suppress psoriatic symptoms in mice. Both RAB and TA, triterpenoids of traditional medicinal plant Ilex kaushue, selectively inhibited reactive oxygen species production, elastase release, and CD11b expression in human neutrophils activated by FPR1, but not non-FPR1 agonists. Importantly, RAB and TA inhibited the binding of N-formyl peptide to FPR1 in human neutrophils, neutrophil-like THP-1 cells, and hFPR1-transfected HEK293 cells, indicating FPR1 antagonism. Moreover, in assays induced by various concentrations of FPR1 agonist, both RAB and TA acted competitively for its binding to the FPR1 receptor. The FPR1-downstream signaling such as Ca2+ mobilisation and activation of Akt and MAPKs was also competitively inhibited. In addition, imiquimod-induced psoriasis-like symptoms, including epidermal hyperplasia, desquamation with scaling, neutrophil skin infiltration, and transepidermal water loss were significantly reduced by both RAB and TA. The results illustrate a possible role of human neutrophils FPR1 receptor in psoriasis-like inflammation. Accordingly, triterpenoids RAB and TA represent novel FPR1 antagonists and exhibit therapeutic potential for treating neutrophilic inflammatory skin diseases.
Assuntos
Neutrófilos/efeitos dos fármacos , Psoríase/prevenção & controle , Receptores de Formil Peptídeo/antagonistas & inibidores , Triterpenos/uso terapêutico , Adulto , Animais , Linhagem Celular , Células Cultivadas , Feminino , Células HEK293 , Humanos , Imiquimode/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Receptores de Formil Peptídeo/metabolismo , Triterpenos/química , Triterpenos/farmacologia , Adulto Jovem , Ácido UrsólicoRESUMO
The pro-resolving mechanism is a recently described endogenous process that controls inflammation. The present study evaluated components of this mechanism, including annexin 1 (ANXA1) and the formyl peptide receptor 2/ALX (FPR2/ALX) receptor, in the antihyperalgesic effect induced by electroacupuncture (EA) in an animal model of persistent peripheral inflammation. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2-10 Hz, ST36-SP6) or subcutaneous BML-111 injection (FPR2/ALX agonist) for 5 consecutive days. In a separate set of experiments, on the first and fifth days after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or naloxone (non-selective opioid receptor antagonist) before EA or BML-111 injection. Paw protein levels of FPR2/ALX and ANXA1 were evaluated on the second day after CFA injection by western blotting technique. EA and BML-111 reduced mechanical hyperalgesia. I.pl. naloxone or WRW4 prevented the antihyperalgesic effect induced by either EA or BML-111. EA increased ANXA1 but did not alter FPR2/ALX receptor levels in the paw. Furthermore, i.pl. pretreatment with WRW4 prevented the increase of ANXA1 levels induced by EA. This work demonstrates that the EA antihyperalgesic effect on inflammatory pain involves the ANXA1/FPR2/ALX pro-resolution pathway. This effect appears to be triggered by the activation of FPR2/ALX receptors and crosstalk communication with the opioid system.
Assuntos
Anexina A1/metabolismo , Eletroacupuntura/métodos , Hiperalgesia/terapia , Dor Nociceptiva/terapia , Receptores de Formil Peptídeo/metabolismo , Receptores Opioides/metabolismo , Animais , Adjuvante de Freund/toxicidade , Ácidos Heptanoicos/farmacologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/etiologia , Dor Nociceptiva/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores Opioides/uso terapêuticoRESUMO
Formyl peptide receptor 2 (FPR2) agonists can stimulate resolution of inflammation and may have utility for treatment of diseases caused by chronic inflammation, including heart failure. We report the discovery of a potent and selective FPR2 agonist and its evaluation in a mouse heart failure model. A simple linear urea with moderate agonist activity served as the starting point for optimization. Introduction of a pyrrolidinone core accessed a rigid conformation that produced potent FPR2 and FPR1 agonists. Optimization of lactam substituents led to the discovery of the FPR2 selective agonist 13c, BMS-986235/LAR-1219. In cellular assays 13c inhibited neutrophil chemotaxis and stimulated macrophage phagocytosis, key end points to promote resolution of inflammation. Cardiac structure and functional improvements were observed in a mouse heart failure model following treatment with BMS-986235/LAR-1219.
Assuntos
Pirrolidinonas/química , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/agonistas , Animais , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Neutrófilos/citologia , Neutrófilos/fisiologia , Fagocitose/efeitos dos fármacos , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Relação Estrutura-AtividadeRESUMO
In oriental medicine, centipede Scolopendra subspinipes mutilans has long been used as a remedy for rheumatoid arthritis (RA), a well-known chronic autoimmune disorder. However, the molecular identities of its bioactive components have not yet been extensively investigated. We sought to identify bioactive molecules that control RA with a centipede. A novel antimicrobial peptide (AMP) (scolopendrasin IX) was identified from Scolopendra subspinipes mutilans. Scolopendrasin IX markedly activated mouse neutrophils, by enhancing cytosolic calcium increase, chemotactic cellular migration, and generation of superoxide anion in neutrophils. As a target receptor for scolopendrasin IX, formyl peptide receptor (FPR)2 mediates neutrophil activation induced by the AMP. Furthermore, scolopendrasin IX administration strongly blocked the clinical phenotype of RA in an autoantibody-injected model. Mechanistically, the novel AMP inhibited inflammatory cytokine synthesis from the joints and neutrophil recruitment into the joint area. Collectively, we suggest that scolopendrasin IX is a novel potential therapeutic agent for the control of RA via FPR2.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Proteínas de Insetos/farmacologia , Receptores de Formil Peptídeo/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antirreumáticos/síntese química , Antirreumáticos/uso terapêutico , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Artrópodes , Autoanticorpos/administração & dosagem , Autoanticorpos/sangue , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Subcutâneas , Proteínas de Insetos/síntese química , Proteínas de Insetos/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Cultura Primária de Células , Receptores de Formil Peptídeo/imunologia , Resultado do TratamentoRESUMO
While the treatment of inflammatory disorders is generally based on inhibiting factors that drive onset of inflammation, these therapies can compromise healing (NSAIDs) or dampen immunity against infections (biologics). In search of new antiinflammatories, efforts have focused on harnessing endogenous pathways that drive resolution of inflammation for therapeutic gain. Identification of specialized pro-resolving mediators (SPMs) (lipoxins, resolvins, protectins, maresins) as effector molecules of resolution has shown promise in this regard. However, their action on inflammatory resolution in humans is unknown. Here, we demonstrate using a model of UV-killed Escherichia coli-triggered skin inflammation that SPMs are biosynthesized at the local site at the start of resolution, coinciding with the expression of receptors that transduce their actions. These include receptors for lipoxin A4 (ALX/FPR2), resolvin E1 (ChemR23), resolvin D2 (GPR18), and resolvin D1 (GPR32) that were differentially expressed on the endothelium and infiltrating leukocytes. Administering SPMs into the inflamed site 4 hours after bacterial injection caused a reduction in PMN numbers over the ensuing 6 hours, the phase of active resolution in this model. These results indicate that in humans, the appearance of SPMs and their receptors is associated with the beginning of inflammatory resolution and that their therapeutic supplementation enhanced the resolution response.
Assuntos
Anti-Inflamatórios/farmacologia , Escherichia coli/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Pele/imunologia , Pele/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Vesícula/imunologia , Vesícula/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Eicosanoides/imunologia , Eicosanoides/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Escherichia coli/efeitos da radiação , Humanos , Inflamação/tratamento farmacológico , Leucócitos/imunologia , Leucócitos/metabolismo , Lipoxinas/farmacologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Receptores de Quimiocinas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Lipoxinas/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Voluntários , Adulto JovemRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Casearia sylvestris Sw. is widely used in popular medicine to treat conditions associated with pain. AIM OF THE STUDY: The present study investigated the influence of hydroalcoholic crude extract of Casearia sylvestris (HCE-CS) and contribution of pro-resolving mediators on mechanical hyperalgesia in a mouse model of chronic post-ischemia pain (CPIP). METHODS AND RESULTS: Male Swiss mice were subjected to ischemia of the right hind paw (3h), then reperfusion was allowed. At 10min, 24h or 48h post-ischemia/reperfusion (I/R), different groups of animals were treated with HCE-CS (30mg/Kg, orally [p.o]), selected agonists at the pro-resolving receptor ALX/FPR2 (natural molecules like resolvin D1 and lipoxin A4 or the synthetic compound BML-111; 0.1-1µg/animal) or vehicle (saline, 10mL/Kg, s.c.), in the absence or presence of the antagonist WRW4 (10µg, s.c.). Mechanical hyperalgesia (paw withdrawal to von Frey filament) was asseseed together with histological and immunostainning analyses. In these settings, pro-resolving mediators reduced mechanical hyperalgesia and HCE-CS or BML-111 displayed anti-hyperalgesic effects which was markedly attenuated in animals treated with WRW4. ALX/FPR2 expression was raised in skeletal muscle or neutrophils after treatment with HCE-CS or BML-111. CONCLUSION: These results reveal significant antihyperalgesic effect of HCE-CS on CPIP, mediated at least in part, by the pathway of resolution of inflammation centred on the axis modulated by ALX/FPR2.
Assuntos
Analgésicos/uso terapêutico , Casearia , Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Analgésicos/farmacologia , Animais , Anexina A1/genética , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Receptores de Formil Peptídeo/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Recent evidence suggests that specialized proresolving lipid mediators (SPMs) generated from docosahexaenoic acid (DHA) can modulate the vascular injury response. However, cellular sources for these autacoids within the vessel wall remain unclear. Here, we investigated whether isolated vascular cells and tissues can produce SPMs and assessed expression and subcellular localization of the key SPM biosynthetic enzyme 5-lipoxygenase (LOX) in vascular cells. Intact human arteries incubated with DHA ex vivo produced 17-hydroxy DHA (17-HDHA) and D-series resolvins, as assessed by liquid chromatography-tandem mass spectrometry. Addition of 17-HDHA to human arteries similarly increased resolvin production. Primary cultures of human saphenous vein endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) converted 17-HDHA to SPMs, including resolvin D1 (RvD1) and other D-series resolvins and protectins. This was accompanied by a rapid translocation of 5-LOX from nucleus to cytoplasm in both ECs and VSMCs, potentially facilitating SPM biosynthesis. Conditioned medium from cells exposed to 17-HDHA inhibited monocyte adhesion to TNF-α-stimulated EC monolayers. These downstream effects were partially reversed by antibodies against the RvD1 receptors ALX/FPR2 and GPR32. These results suggest that autocrine and/or paracrine signaling via locally generated SPMs in the vasculature may represent a novel homeostatic mechanism of relevance to vascular health and disease.-Chatterjee, A., Komshian, S., Sansbury, B. E., Wu, B., Mottola, G., Chen, M., Spite, M., Conte, M. S. Biosynthesis of proresolving lipid mediators by vascular cells and tissues.
Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais/metabolismo , Metabolismo dos Lipídeos/fisiologia , Miócitos de Músculo Liso/metabolismo , Anticorpos , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Células Cultivadas , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Leucócitos/fisiologia , Estrutura Molecular , Transporte Proteico/fisiologia , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismoRESUMO
There is evidence for a relationship between inflammation and seizures because epilepsy can be caused by or result in inflammation. This study aimed to investigate the effect of aspirin and (or) omega-3 polyunsaturated fatty acids (PUFAs) on seizure activity and neurodegeneration in pentylenetetrazole (PTZ)-kindled rats focusing on their effect on corticohippocampal production of lipoxin A4 (LXA4) and expression of formyl peptide receptor-like 1 (FPRL1) receptors. Male rats were injected with PTZ (35 mg/kg, i.p.) 3 times per week for a total of 15 doses. Rats were treated daily with aspirin (20 mg/kg, i.p.), omega-3 PUFAs (85 mg/kg, p.o.), or a combination of them for 35 days. Both LXA4 level and expression of FPRL1 receptor in the cortices and hippocampi of rats' brains were greater in PTZ-kindled rats compared to a saline control group. Cotreatment with aspirin and (or) omega-3 PUFAs reduced convulsive behaviour; reduced levels of LXA4, interleukin-1ß, and nuclear factor-κB; and showed a lower percentage of corticohippocampal degenerative cells compared to PTZ-kindled rats. The combination of the 2 therapeutic agents did not provide significant improvement in comparison with the monotherapies. These findings suggest the use of aspirin or omega-3 PUFAs may delay the development of seizures and provide neuroprotection in a clinical setting.
Assuntos
Aspirina/uso terapêutico , Epilepsia/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , Lipoxinas/metabolismo , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Receptores de Lipoxinas/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Regulação para Baixo , Quimioterapia Combinada , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Pentilenotetrazol/toxicidade , Ratos , Receptores de Formil Peptídeo/metabolismoRESUMO
Resolution of inflammation is a finely regulated process mediated by specialized proresolving lipid mediators (SPMs), including docosahexaenoic acid (DHA)-derived resolvins and maresins. The immunomodulatory role of SPMs in adaptive immune cells is of interest. We report that D-series resolvins (resolvin D1 and resolvin D2) and maresin 1 modulate adaptive immune responses in human peripheral blood lymphocytes. These lipid mediators reduce cytokine production by activated CD8(+) T cells and CD4(+) T helper 1 (TH1) and TH17 cells but do not modulate T cell inhibitory receptors or abrogate their capacity to proliferate. Moreover, these SPMs prevented naïve CD4(+) T cell differentiation into TH1 and TH17 by down-regulating their signature transcription factors, T-bet and Rorc, in a mechanism mediated by the GPR32 and ALX/FPR2 receptors; they concomitantly enhanced de novo generation and function of Foxp3(+) regulatory T (Treg) cells via the GPR32 receptor. These results were also supported in vivo in a mouse deficient for DHA synthesis (Elovl2(-/-)) that showed an increase in TH1/TH17 cells and a decrease in Treg cells compared to wild-type mice. Additionally, either DHA supplementation in Elovl2(-/-) mice or in vivo administration of resolvin D1 significantly reduced cytokine production upon specific stimulation of T cells. These findings demonstrate actions of specific SPMs on adaptive immunity and provide a new avenue for SPM-based approaches to modulate chronic inflammation.
Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Acetiltransferases/deficiência , Acetiltransferases/genética , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Elongases de Ácidos Graxos , Humanos , Inflamação/terapia , Mediadores da Inflamação/metabolismo , Interleucina-2/biossíntese , Metabolismo dos Lipídeos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lipoxinas/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologiaRESUMO
We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation. [BMB Reports 2016; 49(9): 520-525].
Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Receptores de Formil Peptídeo/metabolismo , Animais , Western Blotting , Linhagem Celular , Ciclosporina/farmacologia , Alcaloides Diterpenos , Medicamentos de Ervas Chinesas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Toxina Pertussis/toxicidade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a delaying action against bacterial invasion in CF airway epithelial cells from patients with CF and immortalized cell lines. Bacterial invasion and tight junction integrity were measured by gentamicin exclusion assays and confocal fluorescence microscopy in non-CF (NuLi-1) and CF (CuFi-1) bronchial epithelial cell lines and in primary CF cultures, grown under an air/liquid interface, exposed to either a clinical or laboratory strains of P. aeruginosa LXA4 delayed P. aeruginosa invasion and transepithelial migration in CF and normal bronchial epithelial cell cultures. These protective effects of LXA4 were inhibited by the ALX/FPR2 lipoxin receptor antagonist BOC-2. LXA4 prevented the reduction in mRNA biosynthesis and protein abundance of the tight junction protein ZO-1 and reduced tight junction disruption induced by P. aeruginsosa inoculation. In conclusion, LXA4 plays a protective role in bronchial epithelium by stimulating tight junction repair and by delaying and reducing the invasion of CF bronchial epithelial cells by P. aeruginsosa.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fibrose Cística/tratamento farmacológico , Lipoxinas/farmacologia , Infecções por Pseudomonas/microbiologia , Junções Íntimas/metabolismo , Linhagem Celular , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Expressão Gênica , Humanos , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/fisiologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Mucosa Respiratória/microbiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/microbiologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.
Assuntos
Doenças dos Genitais Femininos/imunologia , Genitália Feminina/imunologia , Inflamação/metabolismo , Reprodução , Animais , Anexina A1/metabolismo , Anti-Inflamatórios/uso terapêutico , Eicosanoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Feminino , Doenças dos Genitais Femininos/tratamento farmacológico , Doenças dos Genitais Femininos/metabolismo , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/metabolismo , Glucocorticoides/metabolismo , Homeostase , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Terapia de Alvo Molecular , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The hepatitis C virus (HCV) nonstructural 5A, a phosphorylated zinc metalloprotein, is an essential component of the HCV replication complex. An amphipathic α-helical peptide (HCV peptide [C5A]) derived from nonstructural 5A membrane anchor domain possesses potent anti-HCV and anti-HIV activity in vitro. In this study, we aimed to investigate the potential of HCV peptide (C5A) to regulate host immune responses. The capacity of HCV peptide (C5A) in vitro to induce migration and calcium mobilization of human phagocytes and chemoattractant receptor-transfected cells was investigated. The recruitment of phagocytes in vivo induced by HCV peptide (C5A) and its adjuvant activity were examined. The results revealed that HCV peptide (C5A) was a chemoattractant and activator of human phagocytic leukocytes by using a G-protein coupled receptor, namely formyl peptide receptor. In mice, HCV peptide (C5A) induced massive phagocyte infiltration after injection in the air pouch or the s.c. region. HCV peptide (C5A) also acted as an immune adjuvant by enhancing specific T cell responses to Ag challenge in mice. Our results suggest that HCV peptide (C5A) derived from HCV regulates innate and adaptive immunity in the host by activating the formyl peptide receptor.
Assuntos
Fragmentos de Peptídeos/fisiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Proteínas não Estruturais Virais/fisiologia , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunidade Inata , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Fragmentos de Peptídeos/química , Fagócitos/virologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/fisiologia , Proteínas não Estruturais Virais/químicaRESUMO
The reaction of human leukocytes to chemoattractants is an important component of the host immune response and also plays a crucial role in the development of inflammation. Sesamin has been shown to inhibit lipid peroxidation and regulate cytokine production. In this study, we examined the effect of sesamin on inflammatory responses elicited by the bacterial chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF) in vitro and in vivo and explored the mechanisms involved. fMLF is recognized by a human G protein-coupled receptor formyl peptide receptor (FPR) on phagocytic leukocytes. Sesamin at concentrations between 12.5 and 50 micromol/L inhibited fMLF-induced chemotaxis of human monocyte cell line THP-1 differentiated with dibutyryl cyclic AMP (P < 0.01). Similarly, sesamin inhibited FPR-transfected rat basophilic leukemia cell [epitope-tagged human FPR (ETFR) cell] migration toward fMLF (P < 0.01). In fMLF-induced inflammation in a murine air-pouch model, intraperitoneal administration of sesamin (12 mgkg(-1)d(-1) for 2 d) suppressed leukocyte infiltration into the air pouch induced by fMLF [(62.89 +/- 7.93) x 10(4) vs. (19.67 +/- 4.43) x 10(4) cells/air pouch; n = 9; P < 0.001]. Ca(2+) mobilization and mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/2) activation are involved in fMLF-induced leukocyte migration. Pretreatment of ETFR cells with sesamin inhibited fMLF-induced ERK1/2 phosphorylation in a dose-dependent manner but did not affect fMLF-induced Ca(2+) flux. Electrophoretic mobility shift assay showed that pretreatment of THP-1 cells with sesamin dose dependently inhibited fMLF-induced nuclear factor-kappaB (NF-kappaB) activation. These results suggest that sesamin inhibits leukocyte activation by fMLF through ERK1/2- and NF-kappaB-related signaling pathways and thus is a potential compound for the management of inflammatory diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Dioxóis/farmacologia , Infiltração Leucêmica/tratamento farmacológico , Lignanas/farmacologia , Monócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sesamum/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Bactérias/metabolismo , Basófilos/efeitos dos fármacos , Bucladesina , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dioxóis/administração & dosagem , Dioxóis/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leucemia/tratamento farmacológico , Lignanas/administração & dosagem , Lignanas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Animais , N-Formilmetionina Leucil-Fenilalanina , NF-kappa B/antagonistas & inibidores , Fosforilação , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Ratos , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Lipoxins (LXs) are potent endogenous counter-regulatory lipid mediators that dampen acute inflammation and promote its resolution. Here, we present our investigation of a new class of thermally and metabolically stable benzo-LXA(4) analogs that are potently anti-inflammatory and easier to synthesize. Replacement of the tetraene unit of native LXA(4) with a benzo-fused ring system not only increases the thermal stability but also enables highly convergent and efficient syntheses of these analogs. In addition, they resist rapid catalysis and inactivation by eicosanoid oxidoreductase. Like native LXs, o-[9, 12]-benzo-omega6-epi-LXA(4), o-[9, 12]-benzo-deoxy-LXA(4), m-[9, 12]-benzo-omega6-epi-LXA(4) and [9, 14]-benzo-omega6-(R/S)-LXA(4) demonstrated potent time-dependent reduction, at nanogram dosages, of PMN infiltration and pro-inflammatory cytokine generation in vivo in murine peritonitis and were organ protective in hind limb ischemia-reperfusion injury of the lung. The o-[9, 12]-benzo-omega6-epi-LXA(4) and m-[9, 12]-benzo-omega6-epi-LXA(4) were most potent in nanogram doses; both decreased PMN infiltration by approximately 32%, while o-[9, 12]-benzo-deoxy-LXA(4) and [9, 15]-omega6-(R/S)-LXA(4) were less potent. The [9,12]-benzo-omega6-epi-LXA(4) also activated a lipoxin A(4) GPCR and increased macrophage phagocytic activity. Taken together, these findings demonstrate a new generation of LXA(4) stable analogs that are easy to synthesize and anti-inflammatory. These benzo-LXA(4) analogs are promising tools for new therapeutic approaches as well as assessing endogenous mechanisms in anti-inflammation and resolution.
Assuntos
Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Lipoxinas/farmacologia , Lipoxinas/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Lipoxinas/química , Lipoxinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Modelos Biológicos , Peritonite/tratamento farmacológico , Peritonite/patologia , Receptores de Formil Peptídeo/metabolismo , Indução de RemissãoRESUMO
Although green tea polyphenol catechin is considered as a potential anti-inflammatory agent, its effect on bacterial component-induced inflammation has been poorly investigated. We examined the capacity of epigallocatechin gallate (EGCG) to regulate leukocyte responses to bacterial chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLF), which is recognized by a human G protein-coupled receptor FPR on phagocytic leukocytes. Pretreatment of human monocytic cells or FPR-transfected rat basophilic leukemia cells (ETFR cells) with EGCG significantly inhibited fMLF-induced chemotaxis. Intraperitoneal administration of EGCG in mice suppressed fMLF-induced leukocyte infiltration into the air pouch created in the skin. Mechanistic studies revealed that EGCG dose-dependently suppressed fMLF-induced calcium flux in monocytic cells and ETFR cells. fMLF-induced ETFR cell migration was significantly inhibited by a specific MEK1/2 inhibitor, PD98059, which was associated with reduction in fMLF-induced ERK1/2 phosphorylation. These results suggest that EGCG inhibits FPR-mediated leukocyte activation thus is a promising anti-inflammatory compound.