Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 27(7): 661-668, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603571

RESUMO

We investigated the effects of Lactuca sativa L. extracts (Lactuc) on pentobarbital-induced sleep in mice to elucidate the mechanisms underlying its impact on sleep quality. Mice were randomly assigned to five groups: control, positive control (diazepam 2 mg/kg b.w.), and three groups orally administered with Lactuc (50, 100, and 200 mg/kg b.w.). After 2 weeks of oral administration and intraperitoneal injections, the mice were killed. We found that the Lactuc-administered groups had significantly reduced sleep latency and increased sleep duration compared with the control group. Furthermore, the oral administration of Lactuc induced a significant increase in mRNA expression and protein expression of adenosine A1 receptor in the brains compared with the expressions in the control group. In addition, the Lactuc-administered groups exhibited significantly higher levels of mRNA expressions of GABAA receptors subunits α2, ß2, γ1, and, γ2 in the brain tissue. Therefore, we suggest that Lactuc could be used to develop natural products that effectively improve sleep quality and duration.


Assuntos
Lactuca , Pentobarbital , Extratos Vegetais , Receptor A1 de Adenosina , Receptores de GABA-A , Sono , Regulação para Cima , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Pentobarbital/farmacologia , Camundongos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Sono/efeitos dos fármacos , Masculino , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/genética , Regulação para Cima/efeitos dos fármacos , Lactuca/química , Lactuca/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Humanos , Camundongos Endogâmicos ICR , Duração do Sono
2.
Biochem Pharmacol ; 223: 116183, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
3.
Clin Exp Pharmacol Physiol ; 51(3): e13840, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302076

RESUMO

Remimazolam is a newly developed ultra-short-acting benzodiazepine that exerts sedative effects. This study aimed to clarify the effects of remimazolam on cardiac contractility. In a randomised-parallel group trial, haemodynamic parameters were compared between propofol (n = 11) and remimazolam (n = 12) groups during the induction of general anaesthesia in patients undergoing non-cardiac surgery. In a preclinical study, the direct effects of remimazolam on cardiac contractility were also evaluated using isolated rat hearts. RNA sequence data obtained from rat and human hearts were analysed to assess the expression patterns of the cardiac γ-aminobutyric acid type A (GABAA ) receptor subunits. In a clinical study, the proportional change of the maximum rate of arterial pressure rise was milder during the study period in the remimazolam group (propofol: -52.6 [10.2] (mean [standard deviation])% vs. remimazolam: -39.7% [10.5%], p = 0.007). In a preclinical study, remimazolam did not exert a negative effect on left ventricle developed pressure, whereas propofol did exert a negative effect after bolus administration of a high dose (propofol: -26.9% [3.5%] vs. remimazolam: -1.1 [6.9%], p < 0.001). Analysis of the RNA sequence revealed a lack of γ subunits, which are part of the major benzodiazepine binding site of the GABAA receptor, in rat and human hearts. These results indicate that remimazolam does not have a direct negative effect on cardiac contractility, which might contribute to its milder effect on cardiac contractility during the induction of general anaesthesia. The expression patterns of cardiac GABAA receptor subunits might be associated with the unique pharmacokinetics of benzodiazepines in the heart.


Assuntos
Propofol , Humanos , Animais , Ratos , Propofol/farmacologia , Receptores de GABA-A/genética , Benzodiazepinas/farmacologia , Ácido gama-Aminobutírico
4.
Epilepsia ; 65(1): 204-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37746768

RESUMO

OBJECTIVE: γ-Aminobutyric acid type A (GABAA ) receptor subunit gene mutations are major causes of various epilepsy syndromes, including severe kinds such as Dravet syndrome. Although the GABAA receptor is a major target for antiseizure medications, treating GABAA receptor mutations with receptor channel modulators is ineffective. Here, we determined the effect of a novel treatment with 4-phenylbutyrate (PBA) in Gabrg2+/Q390X knockin mice associated with Dravet syndrome. METHODS: We used biochemistry in conjunction with differential tagging of the wild-type and the mutant alleles, live brain slice surface biotinylation, microsome isolation, patch-clamp whole-cell recordings, and video-monitoring synchronized electroencephalographic (EEG) recordings in Gabrg2+/Q390X mice to determine the effect of PBA in vitro with recombinant GABAA receptors and in vivo with knockin mice. RESULTS: We found that PBA reduced the mutant γ2(Q390X) subunit protein aggregates, enhanced the wild-type GABAA receptor subunits' trafficking, and increased the membrane expression of the wild-type receptors. PBA increased the current amplitude of GABA-evoked current in human embryonic kidney 293T cells and the neurons bearing the γ2(Q390X) subunit protein. PBA also proved to reduce endoplasmic reticulum (ER) stress caused by the mutant γ2(Q390X) subunit protein, as well as mitigating seizures and EEG abnormalities in the Gabrg2+/Q390X mice. SIGNIFICANCE: This research has unveiled a promising and innovative approach for treating epilepsy linked to GABAA receptor mutations through an unconventional antiseizure mechanism. Rather than directly modulating the affected mutant channel, PBA facilitates the folding and transportation of wild-type receptor subunits to the cell membrane and synapse. Combining these findings with our previous study, which demonstrated PBA's efficacy in restoring GABA transporter 1 (encoded by SLC6A1) function, we propose that PBA holds significant potential for a wide range of genetic epilepsies. Its ability to target shared molecular pathways involving mutant protein ER retention and impaired protein membrane trafficking suggests broad application in treating such conditions.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Fenilbutiratos , Camundongos , Humanos , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/complicações , Convulsões/complicações , Epilepsia/genética , Ácido gama-Aminobutírico , Estresse do Retículo Endoplasmático/genética
5.
Epilepsia ; 64(11): 2968-2981, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37577761

RESUMO

OBJECTIVE: To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS: Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS: Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE: This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.


Assuntos
Epilepsia , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Ácido gama-Aminobutírico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
6.
Zhongguo Zhen Jiu ; 43(6): 669-78, 2023 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-37313561

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI. METHODS: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 µL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR. RESULTS: Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). CONCLUSION: EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Assuntos
Eletroacupuntura , Traumatismo por Reperfusão Miocárdica , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Núcleos Cerebelares , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Receptores de GABA-A/genética , RNA Mensageiro
7.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043384

RESUMO

The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.


Assuntos
Leptina , Receptores de GABA-A , Humanos , Leptina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Obesidade/genética , Neurônios/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
8.
Artigo em Chinês | WPRIM | ID: wpr-980777

RESUMO

OBJECTIVE@#To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.@*METHODS@#A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.@*RESULTS@#Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).@*CONCLUSION@#EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Assuntos
Masculino , Animais , Ratos , Ratos Sprague-Dawley , Núcleos Cerebelares , Eletroacupuntura , Traumatismo por Reperfusão Miocárdica/terapia , Receptores de GABA-A/genética , RNA Mensageiro
9.
Arch Toxicol ; 96(9): 2589-2608, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35604417

RESUMO

Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1ß induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.


Assuntos
Antozoários , Animais , Antozoários/química , Antozoários/genética , Anticonvulsivantes/farmacologia , Glutamatos/genética , Humanos , Simulação de Acoplamento Molecular , Pentilenotetrazol , Peptídeos/genética , Filogenia , Receptores de GABA-A/genética , Transcriptoma , Peixe-Zebra/genética , Ácido gama-Aminobutírico
10.
Nat Commun ; 13(1): 2246, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473906

RESUMO

Identification of mechanisms which increase deep sleep could lead to novel treatments which promote the restorative effects of sleep. Here, we show that knockdown of the α3 GABAA-receptor subunit from parvalbumin neurons in the thalamic reticular nucleus using CRISPR-Cas9 gene editing increased the thalamocortical delta (1.5-4 Hz) oscillations which are implicated in many health-promoting effects of sleep. Inhibitory synaptic currents in thalamic reticular parvalbumin neurons were strongly reduced in vitro. Further analysis revealed that delta power in long NREM bouts prior to NREM-REM transitions was preferentially affected by deletion of α3 subunits. Our results identify a role for GABAA receptors on thalamic reticular nucleus neurons and suggest antagonism of α3 subunits as a strategy to enhance delta activity during sleep.


Assuntos
Parvalbuminas , Sono de Ondas Lentas , Animais , Camundongos , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiologia , Ácido gama-Aminobutírico
11.
Biomed Pharmacother ; 146: 112301, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34915415

RESUMO

Treatment of sleep disorders promotes the long-term use of commercially available sleep inducers that have several adverse effects, including addiction, systemic fatigue, weakness, loss of concentration, headache, and digestive problems. Therefore, we aimed to limit these adverse effects by investigating a natural product, the extract of the Hibiscus syriacus Linnaeus flower (HSF), as an alternative treatment. In the electric footshock model, we measured anxiety and assessed the degree of sleep improvement after administering HSF extract. In the restraint model, we studied the sleep rate using PiezoSleep, a noninvasive assessment system. In the pentobarbital model, we measured sleep improvement and changes in sleep-related factors. Our first model confirmed the desirable effects of HSF extract and its active constituent, saponarin, on anxiolysis and Wake times. HSF extract also increased REM sleep time. Furthermore, HSF extract and saponarin increased the expression of cortical GABAA receptor α1 (GABAAR α1) and c-Fos in the ventrolateral preoptic nucleus (VLPO). In the second model, HSF extract and saponarin restored the sleep rate and the sleep bout duration. In the third model, HSF extract and saponarin increased sleep maintenance time. Moreover, HSF extract and saponarin increased cortical cholecystokinin (CCK) mRNA levels and the expression of VLPO c-Fos. HSF extract also increased GABAAR α1 mRNA level. Our results suggest that HSF extract and saponarin are effective in maintaining sleep and may be used as a novel treatment for sleep disorder. Eventually, we hope to introduce HSF and saponarin as a clinical treatment for sleep disorders in humans.


Assuntos
Apigenina/uso terapêutico , Glucosídeos/uso terapêutico , Hibiscus , Extratos Vegetais/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Sono/efeitos dos fármacos , Animais , Apigenina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Corticosterona/sangue , Modelos Animais de Doenças , Eletroencefalografia , Glucosídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pentobarbital , Extratos Vegetais/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Medicamentos Indutores do Sono , Transtornos do Sono-Vigília/sangue , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Estresse Psicológico/sangue , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
12.
Neurosci Lett ; 762: 136142, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34332026

RESUMO

BACKGROUND: The neurobiological mechanisms underlying how general anesthetics render a patient's unconsciousness (hypnosis) remains elusive. The role of the cerebellum in hypnosis induced by general anesthetics is unknown. Gabra6100Q allele Sprague-Dawley (SD) rats have a naturally occurring single nucleotide polymorphism in the GABAA receptor α6 subunit gene that is expressed exclusively in cerebellum granule cells. METHODS: We examined the loss of righting reflex (LORR) induced by isoflurane, and ethanol in Gabra6100Q rats compared with those in wild type (WT) SD rats. We also examined the change of c-Fos expression induced by isoflurane exposure in cerebellum granule cells of both mutant and WT rats. RESULTS: Gabra6100Q rats are more sensitive than WT rats to the LORR induced by isoflurane and ethanol. Moreover, isoflurane exposure induced a greater reduction in c-Fos expression in cerebellum granule cells of Gabra6100Q rats than WT rats. CONCLUSIONS: Based on these data, we speculate that cerebellum may be involved in the hypnosis induced by some general anesthetics and thus may represent a novel target of general anesthetics.


Assuntos
Cerebelo/efeitos dos fármacos , Etanol/farmacologia , Isoflurano/farmacologia , Receptores de GABA-A/genética , Inconsciência/genética , Alelos , Anestésicos Inalatórios/farmacologia , Animais , Depressores do Sistema Nervoso Central/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Inconsciência/induzido quimicamente
13.
Biomed Pharmacother ; 140: 111746, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062412

RESUMO

BACKGROUND/AIMS: Asthma is a common chronic respiratory disease. It has been reported that Pingchuan formula (PCF) can control asthma attacks by reducing airway inflammation, muscle spasm and mucus secretion. However, PCF's mechanism for reducing airway mucus hypersecretion remains unclear. This study aimed to investigate the effect of PCF on airway mucus secretion in asthmatic mice and to explore changes in the PNEC-GABA-IL13-Muc5ac axis. METHODS: Male Babl/c mice were used to establish the asthma model via sensitisation with OVA. Mice were randomly divided into Normal, OVA, DEX, and PCF groups. After treatment, lung histopathology was observed with H&E and PAS staining. BALF levels of IL-5 and IL-13 were detected using ELISA. The levels of mRNA and protein expression for GAD1, GABAARß1, GABAARα1 and Muc5ac in the lung tissue were measured by RT-PCR and Western blot assays. PNECs were observed with AgNOR staining. RESULTS: PCF treatment effectively reduced goblet cell (P < 0.01) and PNEC (P < 0.05) proliferation, lung tissue inflammation and airway mucus hypersecretion. In addition, PCF also markedly downregulated mRNA and protein expression of GAD1, GABAARß1, GABAARα1 and Muc5ac (P < 0.05, compared with OVA), thus inhibiting the GABA-IL-13 pathway in the lung tissue of asthmatic mice. CONCLUSION: These findings suggest that PCF controls asthma attacks by reducing airway inflammation and mucus hypersecretion via the PNEC-GABA-IL13-Muc5ac axis.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Antiasmáticos/farmacologia , Asma/imunologia , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Células Caliciformes/efeitos dos fármacos , Interleucina-13/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Mucina-5AC/metabolismo , Muco/metabolismo , Células Neuroendócrinas/efeitos dos fármacos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
14.
J Ethnopharmacol ; 274: 114047, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33753142

RESUMO

ETHNOPHARMACOLOGY RELEVANCY: For many centuries, Mauremys mutica is highly valued as a food homologous Chinese herbal medicine. It has been considered useful to sedate, nourish brain and promote sleep. However, the animal experimental evidence of its sleep-promoting activity is missing in literature. AIM OF THE STUDY: In this study, PCPA-induced insomnia model was used to explore the sleep-promoting mechanism of enzymolysis peptides from PMM, and its main composition and chemical structure were analyzed. MATERIALS AND METHODS: Experiments were performed using PCPA-induced insomnia model, all animals were intraperitoneally injected with PCPA (350 mg/kg·d) for two days. The sleep-promoting effect evaluated using measuring content of 5-HT, GABA, DA, IL-1, BDNF and expression of 5-HT1A receptor and GABAA receptor α1-subunit in mice brain. Primary structure of peptides was identified by HPLC-ESI-QqTOF-MS/MS. RESULTS: Compared with the model group, the content of 5-HT, GABA, IL-1, BDNF in mice brain of PMM peptide groups was increased to varying degrees, the content of DA was decreased, and the gene transcription and protein expression of 5-HT1A receptor and GABAA receptor α1-subunit were almost all returned to normal levels. In addition, the primary structures of most abundant nine typical peptides in PMM peptides were identified. CONCLUSIONS: The results showed that PMM peptides could improve the disorder of neurotransmitter system, restore compensatory over-expression 5-HT1A receptor and GABAA receptor α1-subunit, and have a good sleep-promoting effect. The specific amino acid composition, sequence and glycosylation modification of PMM peptides may be the key reason for their activity, which lays a foundation for the subsequent development of sleep-promoting peptide products.


Assuntos
Hipnóticos e Sedativos/uso terapêutico , Peptídeos/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Sono/efeitos dos fármacos , Tartarugas , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Hipnóticos e Sedativos/farmacologia , Interleucina-1/metabolismo , Masculino , Camundongos , Peptídeos/farmacologia , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Serotonina/metabolismo , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619110

RESUMO

The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Mapeamento Encefálico/métodos , Maleato de Dizocilpina/farmacologia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/anatomia & histologia , Plasticidade Neuronal/efeitos dos fármacos , Imagem Óptica , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/anatomia & histologia , Tálamo/anatomia & histologia , Vibrissas/lesões
16.
J Ethnopharmacol ; 267: 113511, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148434

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nelumbo nucifera are used in folk medicine for anti-depressant, anti-convulsant, neuroprotective, and many other purposes. AIM OF THE STUDY: The present work evaluated the sleep potentiating effects of water extract from lotus seed in rat, and the neuropharmacological mechanisms underlying these effects. MATERIALS AND METHODS: Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of Lotus extract. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. RESULTS: We found that the amounts of the possible active compounds GABA (2.33 mg/g) and L-tryptophan (2.00 mg/g) were higher than quinidine (0.55 mg/g) and neferine (0.16 mg/g) in lotus seed extract. High dose (160 mg/kg) administration of lotus extract led to a tendency towards decreased sleep latency time and an increase in sleep duration time compared to the control group in a pentobarbital-induced sleep model (p < 0.05). After high dose administration, total sleep and NREM were significantly increased compared to control, while wake time and REM were significantly decreased. Lotus extract-treated rats showed significantly reduced wake time and increased sleep time in a caffeine-induced model of arousal. The transcription level of GABAA receptor, GABAB receptor, and serotonin receptor tended to increase with dose, and lotus extract showed a strong dose-dependent binding capacity to the GABAA receptor. CONCLUSION: The above results strongly suggest that GABA contained in lotus seed extract acts as a sleep potentiating compound, and that sleep-potentiating activity involves GABAA receptor binding.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Nelumbo , Extratos Vegetais/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Medicamentos Indutores do Sono/farmacologia , Sono/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/isolamento & purificação , Masculino , Camundongos Endogâmicos ICR , Nelumbo/química , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transdução de Sinais , Medicamentos Indutores do Sono/isolamento & purificação , Latência do Sono/efeitos dos fármacos , Fatores de Tempo , Ácido gama-Aminobutírico/isolamento & purificação
17.
J Pharmacol Sci ; 145(1): 140-149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357772

RESUMO

Inochinohaha White (IHW) is a Japanese herbal medicine for treating women with anxiety associated with premenstrual syndrome (PMS). In this study, we examined the effects of IHW on anxiety-like behavior in rats undergoing progesterone withdrawal (PWD), a model for PMS. Female rats were injected daily with progesterone for 21 days. Water and ethanol extracts of IHW (WE-IHW and EE-IHW, respectively) were administered orally 15 days after the initiation of progesterone injections. Anxiety-like behavior in an elevated plus maze was evaluated 48 h after the final injection of progesterone. PWD induced anxiety-like behavior, and EE-IHW (300 mg/kg), but not WE-IHW, significantly attenuated this behavior. Administration of the GABA agonists, diazepam or muscimol, significantly attenuated PWD-induced anxiety-like behavior. To investigate the underlying mechanisms of IHW action, we analyzed GABAA receptor expression in the amygdala of these rats. EE-IHW ameliorated the PWD-induced decrease in GABAA receptor ß2-subunit mRNA, although ß2-subunit protein was unchanged. Brain-derived neurotrophic factor (BDNF) has been reported to have anxiolytic effects and enhance GABAergic synaptic transmission. We found that EE-IHW increased BDNF levels in a dose-dependent manner. Our results suggest that EE-IHW attenuates PWD-induced anxiety-like behavior by increasing GABAA receptor-mediated signaling via increases in ß2-subunit and BDNF in the amygdala.


Assuntos
Ansiedade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expressão Gênica/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Síndrome Pré-Menstrual/tratamento farmacológico , Síndrome Pré-Menstrual/psicologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Administração Oral , Tonsila do Cerebelo/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Injeções , Síndrome Pré-Menstrual/genética , Progesterona/administração & dosagem , Ratos Wistar
18.
J Ethnopharmacol ; 267: 113630, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Previously, the phytochemical constituents of Biebersteinia heterostemon Maxim (BHM) and Arenaria kansuensis Maxim (AKM) were studied and the evaluation of anxiolytic effect based on their extracts was also investigated. The two traditional Tibetan herbs, BHM and AKM, have been widely used in Qinghai-Tibet Plateau for cardiopulmonary disorders and neuropsychiatric diseases. The anxiolytic activities of a number of agents mediated by α2/3-containing GABAA receptors (GABAARs) have been demonstrated through the genetic and pharmacological studies. Flavonoids, such as flavones and flavanols, are a class of ligands that act at GABAARs and exhibit anxiolytic effects in vivo. Here, the flavonoids are the predominant constituents isolated from BHM and AKM. And our purpose is to investigate structure-activity relationships of the flavonoid compounds with binding to BZ-S of GABAAR complexes, and to search for anxiolytic constituents that lack undesirable-effects such as sedation and myorelaxation. MATERIALS AND METHODS: The flavonoid constituents were separated and purified through the repeatedly silica gel or/and C18 column chromatography. The affinities of the compounds for BZ-S of GABAARs were detected by the radioreceptor binding assay with bovine cerebellum membranes, in which the different recombinant subunits-containing GABAARs were expressed in HEK 293T cells. The behavior tests, including elevated plus maze, locomotor activity, holeboard, rotarod and horizontal wire, were used to determine and evaluate the anxiolytic, sedative, and myorelaxant effects of these flavonoids. RESULTS: Eleven total flavonoid compounds were obtained from the Tibetan herbs (BHM and AKM). The flavones with 6-and/or 8-OMe possessed the most potent binding affinity to GABAARs, which were based on the result of structure-activity relationships analysis. Demethoxysudachitin (DMS, Ki = 0.59 µM), a flavone that binds to recombinant α1-3/5 subunit-containing GABAARs, was isolated from BHM, and exhibited high anxiolytic activity, without inducing sedation and myorelaxation. Moreover, the anxiolytic effect of DMS was antagonized by flumazenil, suggesting that a mode of action was mediated via the BZ-S of GABAARs. CONCLUSIONS: This present study indicated that the flavones, especially DMS, are novel GABAAR ligands and therapeutic potential candidates for anxiety.


Assuntos
Ansiolíticos/farmacologia , Arenaria , Comportamento Animal/efeitos dos fármacos , Flavonoides/farmacologia , Geraniaceae , Extratos Vegetais/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Ansiolíticos/química , Ansiolíticos/isolamento & purificação , Ansiolíticos/toxicidade , Arenaria/química , Arenaria/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/toxicidade , Geraniaceae/química , Geraniaceae/toxicidade , Células HEK293 , Humanos , Ligantes , Medicina Tradicional Tibetana , Camundongos Endogâmicos C57BL , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Ligação Proteica , Ratos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade
19.
Brain Res Bull ; 162: 1-10, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32428626

RESUMO

OBJECTIVE: To observe the impacts of electroacupuncture (EA) stimulation at "Zusanli and Kunlun Points" on spinal dorsal horn microglia activation in L5 spinal nerve ligation (SNL) rats and BNDF, P2 × 4 and GABAAγ2, and the changes in spinal dorsal horn synaptic plasticity in model rats. METHODS: Adult male SD rats (180-220 g) were selected and randomly divided into 6 groups, including the sham group, the SNL group, the SNL + EA group, the SNL+5-BDBD group, the SNL + EA + 5-BDBD group and the SNL + FEA group. The changes in the Iba-1, BDNF, P2 × 4 and GABAAγ2 in the spinal cord of rats were observed by Western blotting, immunofluorescence, RT-PCR and other techniques; the long-term changes in the potential after the excitatory synapse of the spinal dorsal horn in rats were observed by in vivo electrophysiological technique. RESULTS: After 7 days of intervention, the fluorescence intensity (FI) of P2 × 4 and Iba-1 in the SNL + EA group was lower than that in the SNL group and higher than that in the sham group(P < 0.01), but the FI of GABAAγ2 was higher than that in the SNL group(P < 0.01); the expression of Iba-1, BDNF and P2 × 4 proteins in the SNL + EA group, the SNL+5-BDBD group and the SNL + EA + 5-BDBD group was significantly lower than that in the SNL + FEA group(P < 0.05), but the expression of GABAAγ2 protein was higher (P < 0.05); after treatment with EA, the expression levels of Iba-1 mRNA and P2 × 4 mRNA in the SNL + EA group were lower than those in the SNL group(P < 0.01), but the expression levels of GABAAγ2 mRNA were higher (P < 0.01). Meanwhile, long-term potentiation changes could not be induced in the SNL + EA group. CONCLUSION: The EA stimulation at "Zusanli" and "Kunlun" points can improve the pain threshold of rats with neuropathic pain (NP), inhibit the excitatory postsynaptic potential (EPSP), and weaken the excitatory transmission efficiency between synapses during NP.


Assuntos
Eletroacupuntura/métodos , Potenciação de Longa Duração/fisiologia , Neuralgia/metabolismo , Receptores de GABA-A/biossíntese , Receptores Purinérgicos P2X4/biossíntese , Medula Espinal/metabolismo , Animais , Expressão Gênica , Masculino , Neuralgia/genética , Neuralgia/terapia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores Purinérgicos P2X4/genética , Resultado do Tratamento
20.
J Agric Food Chem ; 68(10): 3149-3162, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32062961

RESUMO

Moringa oleifera Lam. (MO), which is widely consumed as both food and herbal medicine in tropical and subtropical regions, has a wide spectrum of health benefits. Yet, whether the oil obtained from MO seeds could affect (improve) the sleep activity remains unclear. Herein, we used the locomotor activity, pentobarbital-induced sleeping, and pentetrazol-induced convulsions test to examine sedative-hypnotic effects (SHE) of MO oil (MOO) and explored the underlying mechanisms. Besides, the main components of MOO like oleic acid, ß-Sitosterol, and Stigmasterol were also evaluated. The results showed that they possessed good SHE. Except for oleic acid and Stigmasterol, they could significantly elevate γ-amino butyric acid (GABA) and reduce glutamic acid (Glu) levels in the hypothalamus of mice. Moreover, SHE was blocked by picrotoxin, flumazenil, and bicuculline, except for oleic acid, which could not be antagonized by picrotoxin. Molecular mechanisms showed that MOO and ß-Sitosterol significantly upregulated the amount of protein-level expression of Glu decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice, not affecting GAD67, γ2 subunits. These data indicated that MOO modulates sleep architectures via activation of the GABAA-ergic systems.


Assuntos
Hipnóticos e Sedativos/administração & dosagem , Moringa oleifera/química , Pentobarbital/administração & dosagem , Extratos Vegetais/administração & dosagem , Óleos de Plantas/administração & dosagem , Receptores de GABA-A/metabolismo , Sono/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores de GABA-A/genética , Sementes/química , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA