Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 8-12, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300694

RESUMO

The basic objective of this study was to examine the possible effects of treadmill exercise on obesity-related sexual behavior disorder in obese male rats and the role of kisspeptin in this effect. The rats were separated from their mothers at the age of 3 weeks, and classified into four groups as Control (C): normal diet-sedentary group, Exercise (E): normal diet-exercise group, Obese (O): high-fat diet-sedentary group, Obese + Exercise (O+E): high-fat diet-exercise grouSexual behavioral testing was conducted in the rats. At the end of the study, brain samples were taken from the animals for gene expression analyses. The treadmill exercise caused a significant increase in the O+E Group compared to the O Group in kisspeptin and kiss1R gene expression and in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters (p<0.05), and a significant decrease in ML, IL, III, EL sexual behavior parameters (p<0.05). Treadmill exercise caused a significant decrease in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters and kisspeptin and kiss1R gene expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum in E Group compared to C Group (p<0.05), and a significant increase in ML, IL, III, EL sexual behavior parameters (p<0.05). Based on this effect, we believe that it is caused by an increase in kisspeptin and kiss1R expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum. In conclusion, treadmill exercise-induced kisspeptin secretion may increase GnRH secretion and cause hypothalamo-pituitary gonadal axis activation and ameliorative effect on deteriorated sexual function.


Assuntos
Hipotálamo , Kisspeptinas , Obesidade , Condicionamento Físico Animal , Disfunções Sexuais Fisiológicas , Animais , Masculino , Ratos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Obesidade/terapia , Obesidade/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Comportamento Sexual Animal
2.
J Ovarian Res ; 16(1): 15, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650561

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Electroacupuncture (EA) can effectively improve hyperandrogenism and increase ovulation frequency in patients with PCOS. Pieces of suggest that androgen activity in the brain is associated with impaired steroid negative feedback in such patients. Studies have shown that EA regulated androgen receptor (AR) expression and local factor levels (such as anti-Müllerian hormone and inhibin B) in the ovary of PCOS rats. However, few studies have explored the effect of EA on androgen activity in the brain. OBJECTIVE: This study investigated the effect of EA on the kisspeptin-gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) neural circuit and sex hormone receptor expression in the hypothalamus of PCOS rats. METHODS: PCOS signs were induced by letrozole administration, and the induced rats were treated with low-frequency EA at Guan Yuan acupoint (CV4). The effect of EA on PCOS-like signs was evaluated by observing changes in the body weight, ovarian quality, ovarian morphology, and serum sex hormone levels in rats. To explore the mechanism of the effect of EA on PCOS-like signs, the neuropeptide content of the kisspeptin-GnRH/LH neural circuit was assessed using enzyme-linked immunosorbent assay(ELISA); AR and estrogen receptor α (ERα) coexpression on kisspeptin/neurokinin B/dynorphin (KNDy) neurons was determined via triple-label immunofluorescence; and protein and mRNA expression of Kiss1, Ar, Esr1, and kisspeptin receptor (Kiss1r) was evaluated via western blotting and Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS: The results revealed that the estrous cycle of rats in the EA treatment group recovered, and their body and ovary weight reduced; ovarian morphology improved; serum testosterone and LH levels significantly decreased; and kisspeptin, GnRH, and dynorphin levels in hypothalamic arcuate nucleus significantly decreased. Compared with controls, the number of AR/Kiss1-positive cells increased, number of ERα/Kiss1-positive cells decreased, and protein and mRNA expression of Kiss1, Ar, and Kiss1r significantly increased in PCOS rats. However, EA treatment reversed these changes and reduced the expression of Kiss1, Ar, and Kiss1r significantly. CONCLUSION: Improvement in the reproductive hallmarks of PCOS rats via EA may be achieved by regulating the kisspeptin-GnRH/LH circuit via androgen activity attenuation. Thus, the results provide an experimental basis for acupuncture as an adjuvant medical therapy on PCOS.


Assuntos
Eletroacupuntura , Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Androgênios/metabolismo , Dinorfinas/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônios Esteroides Gonadais , Hormônio Liberador de Gonadotropina , Kisspeptinas/metabolismo , Hormônio Luteinizante , Neurocinina B/metabolismo , Neurônios , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Receptores de Kisspeptina-1/metabolismo , RNA Mensageiro/metabolismo
3.
Hormones (Athens) ; 21(4): 641-652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001287

RESUMO

BACKGROUND: Kiss-1 neuron, one of the metabolic sensors in the hypothalamus, is necessary for puberty initiation. It acts through G protein-coupled receptor, known as GPR54. In this study, the mechanism of the hypothalamic Kiss-1-GPR54 signaling pathway in a high-fat diet and exercise was investigated in growing male rats. METHODS: A total of 135 3-week-old male weaned rats were kept on a high-fat diet (HFD) and exercise (60-70% [Formula: see text], 1 h/day, 5 days/week). They were randomly divided, as follows: control group (C); normal diet + exercise group (CE); HFD group (H); and HFD + exercise group (HE). Hypothalamus, testis, and serum samples of each group were collected on postnatal day (PND) 21 (early childhood), 43 (puberty), and 56 (maturity). Immunofluorescence, quantitative real-time PCR, hematoxylin and eosin staining, and chemiluminescent immunoassays were used in the study. ANOVA was used to analyze the effects of age (PNDs 21, 43, and 56), exercise (exercise and sedentariness), and diet (high-fat and normal) on the biological indices of rats. RESULTS: mRNA and protein expression of Kiss-1 and GPR54 in the hypothalamus gradually increased along with growth and peaked at PND 43, while those in serum testosterone increased and peaked at PND 56. The high-fat diet increased the expression of the Kiss-1-GPR54 system in the hypothalamus, whereas the serum testosterone decreased during different stages of growth. Exercise decreased the expression of Kiss-1 at PND 56 and increased it at PND 43. Meanwhile, it decreased testosterone and the deposition of lipid droplets in the testis at all ages of development. CONCLUSIONS: The expression of Kiss-1-GPR54 in male rats showed fluctuating changes during growth and development. The high-fat diet was able to upregulate the expression of the Kiss-1-GPR54 system in the hypothalamus. The exercise was able to correct the adverse effect of the high-fat diet on the Kiss-1-GPR54 signaling pathway in the hypothalamus and the function of the hypothalamic-pituitary-gonadal (HPG) axis, but had age-specific effects on the male rats' development.


Assuntos
Kisspeptinas , Corrida , Animais , Masculino , Ratos , Dieta Hiperlipídica/efeitos adversos , Hipotálamo , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/metabolismo , Transdução de Sinais , Testosterona/metabolismo
4.
Metabolism ; 129: 155141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074314

RESUMO

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Assuntos
Kisspeptinas , Desnutrição , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrição/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia
5.
Front Neuroendocrinol ; 64: 100951, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757093

RESUMO

Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.


Assuntos
Kisspeptinas , Peixe-Zebra , Animais , Genes Supressores de Tumor , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Reprodução/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Neuroendocrinology ; 112(10): 998-1026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963114

RESUMO

INTRODUCTION: The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS: BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS: At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION: These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.


Assuntos
Kisspeptinas , Progesterona , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Foliculoestimulante , Antagonistas GABAérgicos , Gônadas , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Progesterona/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia , Testosterona/metabolismo , Desmame
7.
Brain Res Bull ; 170: 90-97, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571552

RESUMO

Kisspeptin is a neuropeptide responsible for propagating the hypothalamic-pituitary-gonadal (HPG) axis and initiating puberty. Pubertal exposure to an immune challenge causes enduring sexual behavior dysfunction in males and females, but the mechanism underlying this stress-induced sexual dysfunction remains unknown. Previous findings show that stress exposure can downregulate the HPG axis in adult females. However, it is unclear whether stress induced HPG axis suppression is limited to adult females or also extends to males and to pubertal animal models. The current study was designed to investigate the sex-specific consequences of a pubertal immune challenge on specific components of the HPG axis. Six-week old pubertal male and female mice were treated with saline or with lipopolysaccharide, a bacterial endotoxin. Expression of hypothalamic Kiss1 and Kiss1R as well as serum concentrations of luteinizing hormone, follicle-stimulating hormone, and growth hormone were examined. Pubertal lipopolysaccharide treatment decreased hypothalamic Kiss1, but not Kiss1R, expression in both males and females. Furthermore, only males showed decreases in circulating luteinizing and follicle-stimulating hormones. These results show that pubertal immune challenge suppresses the HPG axis by inhibiting Kiss1 production and decreasing serum gonadotropin concentrations in pubertal males, but points to a different mechanism in pubertal females.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Hipotálamo/metabolismo , Lipopolissacarídeos/farmacologia , Hormônio Luteinizante/sangue , Masculino , Camundongos
8.
J Clin Invest ; 130(12): 6739-6753, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196464

RESUMO

BACKGROUNDKisspeptin is a key regulator of hypothalamic gonadotropin-releasing hormone (GnRH) neurons and is essential for reproductive health. A specific kisspeptin receptor (KISS1R) agonist could significantly expand the potential clinical utility of therapeutics targeting the kisspeptin pathway. Herein, we investigate the effects of a KISS1R agonist, MVT-602, in healthy women and in women with reproductive disorders.METHODSWe conducted in vivo and in vitro studies to characterize the action of MVT-602 in comparison with native kisspeptin-54 (KP54). We determined the pharmacokinetic and pharmacodynamic properties of MVT-602 (doses 0.01 and 0.03 nmol/kg) versus KP54 (9.6 nmol/kg) in the follicular phase of healthy women (n = 9), and in women with polycystic ovary syndrome (PCOS; n = 6) or hypothalamic amenorrhea (HA; n = 6). Further, we investigated their effects on KISS1R-mediated inositol monophosphate (IP1) and Ca2+ signaling in cell lines and on action potential firing of GnRH neurons in brain slices.RESULTSIn healthy women, the amplitude of luteinizing hormone (LH) rise was similar to that after KP54, but peaked later (21.4 vs. 4.7 hours; P = 0.0002), with correspondingly increased AUC of LH exposure (169.0 vs. 38.5 IU∙h/L; P = 0.0058). LH increases following MVT-602 were similar in PCOS and healthy women, but advanced in HA (P = 0.004). In keeping with the clinical data, MVT-602 induced more potent signaling of KISS1R-mediated IP1 accumulation and a longer duration of GnRH neuron firing than KP54 (115 vs. 55 minutes; P = 0.0012).CONCLUSIONTaken together, these clinical and mechanistic data identify MVT-602 as having considerable therapeutic potential for the treatment of female reproductive disorders.TRIAL REGISTRATIONInternational Standard Randomised Controlled Trial Number (ISRCTN) Registry, ISRCTN21681316.FUNDINGNational Institute for Health Research and NIH.


Assuntos
Amenorreia , Sinalização do Cálcio/efeitos dos fármacos , Kisspeptinas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Síndrome do Ovário Policístico , Receptores de Kisspeptina-1/agonistas , Adolescente , Adulto , Amenorreia/sangue , Amenorreia/tratamento farmacológico , Amenorreia/patologia , Linhagem Celular , Feminino , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Hormônio Luteinizante/sangue , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/patologia , Receptores de Kisspeptina-1/metabolismo
9.
Biochemistry (Mosc) ; 85(8): 839-853, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33045946

RESUMO

The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.


Assuntos
Tolerância Imunológica , Kisspeptinas/metabolismo , Reprodução/imunologia , Animais , Feminino , Genes Supressores de Tumor , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Gravidez , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165577, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672553

RESUMO

Diabetic male infertility and sub fertility are major complications that may implicate both central and peripheral pathways as well as mechanisms controlling reproduction. This study was an attempt to explore the potential effect of breast milk mesenchymal stem cells (Br-MSCs) as a therapeutic tool for diabetic induced reproductive dysfunction at molecular level. Forty-five adult male Sprague Dawely rats were divided into 3 groups (n = 15); control group, diabetic group, and Br-MSCs treated diabetic group. The homing ability of Br-MSCs in diabetic treated rat testicles was confirmed via semi-quantitative RT- PCR analysis of a human specific Gapdh mRNA expression level. Our result showed that type1 diabetic rats exerted an elevation in blood glucose level and a reduction in body weight, fasting serum insulin, FSH, LH, and total testosterone levels, relative and absolute testicular weights, sperm count, motility, and live ratio. In addition, downregulation in the hypothalamic kisspeptin-GnRH system, HPG axis and testicular steroidogenesis compared to control group was noticed. Moreover, upregulation of testicular proinflammatory and apoptotic markers relative mRNA expression compared to control group was observed. Furthermore, a decrease in testicular tissue antioxidant activity (CAT, SOD, GSH) and an increase in lipid peroxidation (MDA) compared to control group was shown. However, Br-MSCs administration restored or even exceeded the normal physiological tone in most of these parameters to the point where a potential therapeutic role for Br-MSCs in type1diabetic induced infertility can be suggested.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores de Kisspeptina-1/metabolismo , Testículo/metabolismo , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Leite Humano/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo , Testosterona/metabolismo
11.
Theriogenology ; 139: 167-177, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31419703

RESUMO

Kisspeptin (Kiss1), neurokinin-B (NKB) and dynorphin (Dyn) neurons regulate the surge and pulsatile centres of gonadotropin releasing hormone (GnRH) in the hypothalamus and are modulated by the ovarian steroids. Accordingly, we studied the temporospatial expression of Kiss1, its receptor and other genes that regulate GnRH in the preoptic area (POA) and arcuate (ARC) regions of hypothalamus at different phases of bubaline estrous cycle. Brain of buffalo (n = 32) was collected immediately after exsanguination and categorized into early luteal (EL), mid luteal (ML), follicular (FL) stages and acyclic (n = 8/group). Total RNA was extracted from the POA and ARC of each stage and real time PCR amplification of Kiss1, Kiss1r, NKB, NKB receptor (NKBR), Dyn, Dyn receptor (OPRK1), GnRH1, ERα, PR, LEPR and GHSR was done using GAPDH as endogenous control and acyclic stage as calibrator group. Further, immunolocalization of Kiss1 and Kiss1r was done on the hypothalamus. In the POA, significant up-regulation of Kiss1 and NKB with a concomitant down-regulation of Dyn transcripts was recorded at FL stage. There was, however, down-regulation of Kiss1 and Kiss1r during the EL perhaps due to the loss of estradiol as a consequence of ovulation. On the other hand, in the ARC, there was a significant up-regulation of Kiss1 and Dyn at FL and ML, while NKB transcript was consistently down-regulated at any stage of estrous cycle. In the POA, expression of ERα was not modulated; however, PR was down-regulated in the EL. In the ARC, the ERα expression was significantly up-regulated in the EL, whereas, PR was moderately expressed irrespective of the stage of estrous cycle. The immunolocalization study revealed the presence of Kiss1 and Kiss1r in the POA and ARC in the cyclic buffalo with relative abundance at FL. The transcriptional profile of the genes suggests that there is estrous cycle stage specific expression of Kiss1, Kiss1r and other GnRH regulating genes in the POA and ARC regions of hypothalamus in the buffalo. Up-regulation of Kiss1r in the POA during ML and ARC during EL indicates the involvement of kisspeptinergic system in the regulation of low LH pulse frequencies during the early and mid luteal phases in the cyclic buffalo.


Assuntos
Búfalos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animais , Estro/metabolismo , Feminino , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética
12.
Med Hypotheses ; 128: 54-57, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31203909

RESUMO

Hypogonadotropic hypogonadism (secondary hypogonadism), congenital or acquired, is a form of hypogonadism that is due to problems with either the hypothalamus or pituitary gland affecting gonadotropin levels. Pulsatile secretion of gonadotropin-releasing hormone (GnRH) by hypothalamus is a primer step to initiate the release of pituitary gonadotropins. Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are accepted as two major players in the activation and inhibition of GnRH regarding the neuroendocrine functioning of the hypothalamic pituitary gonadal axis. Kisspeptin is known as the most potent activator of GnRH. Regarding the inhibition of GnRH, RF-amide-related peptide-3 (RFRP-3) is accepted as the mammalian orthologue of GnIH in avian species. RF9 (1-adamantane carbonyl-Arg-Phe-NH2) is an antagonist of RFRP-3/GnIH receptor (neuropeptide FF receptor 1 (NPFFR1; also termed as GPR147). In recent years, several studies have indicated that RF9 activates GnRH neurons and gonadotropins in a kisspeptin receptor (Kiss1r, formerly known as GPR54) dependent manner. These results suggest that RF9 may have a bimodal function as both an RFRP-3 antagonist and a kisspeptin agonist or it may be a kiss1r agonist rather than an RFRP-3/GnIH receptor antagonist. These interactions are possible because Kisspeptin and GnIH are members of the RF-amide family, and both possibilities are not far from explaining the potent gonadotropin stimulating effects of RF9. Therefore, we hypothesize that RF9 may be a new therapeutic option for the hypogonadotropic hypogonadism due to its potent GnRH stimulating effects. A constant or repeated administration of RF9 provides a sustained increase in plasma gonadotrophin levels. However, applications in the same way with GnRH analogues and kisspeptin may result in desensitization of the gonadotropic axis. The reasons reported above contribute to our hypothesis that RF9 may be a good option in the GnRH stimulating as a kisspeptin agonist. We suggest that further studies are needed to elucidate the potential effects of RF9 in the treatment of the hypogonadotropic hypogonadism.


Assuntos
Adamantano/análogos & derivados , Dipeptídeos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Adamantano/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hipogonadismo/terapia , Camundongos , Modelos Biológicos , Modelos Teóricos , Neuropeptídeos/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Receptores de Neuropeptídeos/metabolismo
13.
Anim Biotechnol ; 30(4): 342-351, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30444171

RESUMO

ABSTARCT The neuropeptide kisspeptin (Kp) through its receptor Kiss1r regulates the HPG axis by controlling GnRH release. Since buffalo is a seasonal breeder with problems of delayed puberty and postpartum anestrus, we characterized the Kiss1 and Kiss1r and investigated the immunolocalization in the hypothalamus and corpus luteum (CL). Kiss1 and Kiss1r genes were amplified from gDNA covering the coding region, cloned and sequenced with accession numbers MF168937 and MG820539, respectively. The Kiss1 DNA sequence had two exonic segment contained coding sequence (cds); 408 bp encoding a predicted protein of 136 aa with conservation of Kp-10 and shared 94.5-98.3% identity with ruminants. Kiss1r DNA sequence consisted of five exons with a cds of 1134 bp encoding a protein of 378 aa. Phylogenetic analysis of Kiss1 and Kiss1r revealed that it formed a monophyletic clade with cattle, which branched from sheep and goat. Immunofluorescence study revealed the presence of Kiss1 and Kiss1r in the neuronal soma and perinuclear area of preoptic and arcuate regions of the hypothalamus and luteal cells of the CL. This is the first report on molecular characterization of bubaline Kiss1 and Kiss1r genes that confirmed the presence of conserved Kp-10 like other ruminants and kisspeptinergic system is present in the hypothalamus and CL.


Assuntos
Búfalos/genética , Corpo Lúteo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética , Animais , Sequência de Bases , Búfalos/metabolismo , Feminino , Kisspeptinas/química , Kisspeptinas/metabolismo , Filogenia , Receptores de Kisspeptina-1/química , Receptores de Kisspeptina-1/metabolismo
14.
J Chem Neuroanat ; 92: 71-82, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008384

RESUMO

Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Receptores de Kisspeptina-1/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Dinorfinas/metabolismo , Feminino , Neurocinina B/metabolismo
15.
Endocrine ; 62(1): 195-206, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29948931

RESUMO

PURPOSE: Obesity may lead to male hypogonadism, the underlying mechanism of which remains unclear. In the present study, we established a murine model of male hypogonadism caused by high-fat diet-induced obesity to verify the following hypotheses: 1) an increased leptin level may be related to decreased secretion of GnRH in obese males, and 2) repression of kisspeptin/GPR54 in the hypothalamus, which is associated with increased leptin levels, may account for the decreased secretion of GnRH and be involved in secondary hypogonadism (SH) in obese males. METHODS: Male mice were fed high-fat diet for 19 weeks and divided by body weight gain into diet-induced obesity (DIO) and diet-induced obesity resistant (DIO-R) group. The effect of obesity on the reproductive organs in male mice was observed by measuring sperm count and spermatozoid motility, relative to testis and epididymis weight, testosterone levels, and pathologic changes. Leptin, testosterone, estrogen, and LH in serum were detected by ELISA method. Leptin receptor (Ob-R), Kiss1, GPR54, and GnRH mRNA were measured by real-time PCR in the hypothalamus. Expression of kisspeptin and Ob-R protein was determined by Western blotting. Expression of GnRH and GPR54 protein was determined by immunohistochemical analysis. RESULTS: We found that diet-induced obesity decreased spermatozoid motility, testis and epididymis relative coefficients, and plasma testosterone and luteinizing hormone levels. An increased number and volume of lipid droplets in Leydig cells were observed in the DIO group compared to the control group. Significantly, higher serum leptin levels were found in the DIO and DIO-R groups. The DIO and DIO-R groups showed significant downregulation of the GnRH, Kiss1, GPR54, and Ob-R genes. We also found decreased levels of GnRH, kisspeptin, GPR54, and Ob-R protein in the DIO and DIO-R groups. CONCLUSIONS: These lines of evidence suggest that downregulation of Ob-R and kisspeptin/GPR54 in the murine hypothalamus may contribute to male hypogonadism caused by high-fat diet-induced obesity.


Assuntos
Regulação para Baixo , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Obesidade/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores para Leptina/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina/metabolismo , Hipogonadismo/etiologia , Hipogonadismo/genética , Kisspeptinas/genética , Leptina/sangue , Masculino , Camundongos , Obesidade/complicações , Obesidade/genética , Receptores de Kisspeptina-1/genética , Receptores para Leptina/genética , Motilidade dos Espermatozoides/fisiologia , Testículo/metabolismo
16.
Sci Rep ; 8(1): 2794, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434234

RESUMO

The roles of kisspeptin signaling outside the hypothalamus in the brain are unknown. We examined here the impact of Kiss1r-deletion on hippocampus-related behaviors of anxiety and spatial learning in adult male mice using two mouse models. In the first, global Kiss1r-null and control mice were gonadectomized (GDX KISS1R-KO). In the second, KISS1R signalling was rescued selectively in gonadotropin-releasing hormone neurons to generate Kiss1r-null mice with normal testosterone levels (intact KISS1R-KO). Intact KISS1R-KO rescue mice were found to spend twice as much time in the open arms of the elevated plus maze (EPM) compared to controls (P < 0.01). GDX KISS1R-KO mice showed a similar but less pronounced trend. No differences were detected between intact KISS1R-KO mice and controls in the open field test (OFT), although a marked reduction in time spent in the centre quadrant was observed for all GDX mice (P < 0.001). No effects of KISS1R deletion or gonadectomy were detected in the Morris water maze. These observations demonstrate that KISS1R signalling impacts upon anxiogenic neural circuits operative in the EPM, while gonadal steroids appear important for anxiety behaviour observed in the OFT. The potential anxiogenic role of kisspeptin may need to be considered in the development of kisspeptin analogs for the clinic.


Assuntos
Ansiedade/metabolismo , Kisspeptinas/metabolismo , Animais , Ansiedade/fisiopatologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Transdução de Sinais
17.
Reprod Fertil Dev ; 30(5): 759-765, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29121483

RESUMO

Recent studies have shown that N-carbamylglutamate (NCG) and arginine (ARG) supplementation improves reproductive performance in livestock. The objectives of the present study were to evaluate the effects of NCG and ARG on GT1-7 cell gonadotrophin-releasing hormone (GnRH) secretion, gene expression and cell proliferation. GT1-7 cells were treated in vitro with different concentrations of NCG (0-1.0mM) or ARG (0-4.0mM) in serum-free medium for 12 or 24h. For GnRH secretion and cell proliferation, GT1-7 cells were more sensitive to NCG than ARG. NCG treatment after 12h increased cell numbers and inhibited GnRH secretion in a dose-dependent manner (P<0.05), although there was no significant effect of NCG on these parameters after 24h culture. ARG treatment decreased GnRH secretion after 24h (P<0.05), whereas it had no effect after 12h. GT1-7 cells express GnRH, Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), neuronal nitric oxide synthase (nNOS) and estrogen receptor α (ERα) genes. High concentrations of NCG (1.0mM) and ARG (4.0mM) inhibited (P<0.05) GnRH and nNOS mRNA abundance in GT1-7 cells. ARG treatment decreased Kiss1 and increased ERα mRNA abundance. Thus, high concentrations of NCG (1.0mM) and ARG (4.0mM) may act both directly and indirectly to regulate GnRH neuron function by downregulating genes related to GnRH synthesis and secretion to slow GnRH production while stimulating GT1-7 cell proliferation.


Assuntos
Arginina/farmacologia , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glutamatos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
18.
Gynecol Endocrinol ; 34(5): 437-441, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29187003

RESUMO

The effects of androgens on gonadotropin-releasing hormone (GnRH) secretion in females have not been fully established. To clarify the direct effects of androgens on hypothalamic reproductive factors, we evaluated the effects of chronic testosterone administration on hypothalamic GnRH regulatory factors in ovariectomized (OVX) female rats. Both testosterone and estradiol reduced the serum luteinizing hormone levels of OVX female rats, indicating that, as has been found for estrogen, testosterone suppresses GnRH secretion via negative feedback. Similarly, the administration of testosterone or estradiol suppressed the hypothalamic mRNA levels of kisspeptin and neurokinin B, both of which are positive regulators of GnRH, whereas it did not affect the hypothalamic mRNA levels of the kisspeptin receptor or neurokinin-3 receptor. On the contrary, the administration of testosterone, but not estradiol, suppressed the hypothalamic mRNA expression of prodynorphin, which is a negative regulator of GnRH. The administration of testosterone did not alter the rats' serum estradiol levels, indicating that testosterone's effects on hypothalamic factors might be induced by its androgenic activity. These findings suggest that as well as estrogen, androgens have negative feedback effects on GnRH in females and that the underlying mechanisms responsible for these effects are similar, but do not completely correspond, to the mechanisms underlying the effects of estrogen on GnRH.


Assuntos
Dinorfinas/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Testosterona/farmacologia , Animais , Dinorfinas/genética , Estradiol/farmacologia , Feminino , Hipotálamo/metabolismo , Kisspeptinas/genética , Leptina/sangue , Hormônio Luteinizante/sangue , Neurocinina B/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Receptores da Neurocinina-3/genética , Receptores da Neurocinina-3/metabolismo
19.
Theriogenology ; 112: 2-10, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28916209

RESUMO

The discovery of the hypothalamic neuropeptide kisspeptin and its receptor (KISS1R) have dramatically improved our knowledge about the central mechanisms controlling reproduction. Kisspeptin neurons could be considered the hub where internal and external information controlling reproduction converge. The information is here elaborated and the command dispatched to GnRH neurons, the final output of the brain system controlling reproduction. Several studies have shown that in mammals administration of kisspeptin could finely modulate many aspects of reproduction from puberty to ovulation. For example in ewes kisspeptin infusion triggered ovulation during the non-breeding season and in prepubertal rat repeated injections advanced puberty onset. However, especially in livestock, the suboptimal pharmacological properties of endogenous kisspeptin, notably it short half-life and consequently its poor pharmacodynamics, fetters its use to experimental setting. To overcome this issue synthetic KISS1R agonists, mainly based on kisspeptin backbone, were created. Their more favorable pharmacological profile, longer half-life and duration of action, allowed to perform promising initial experiments for controlling ovulation and puberty. Additional experiments and further refinement of analogs would still be necessary to exploit fully the potential of targeting the kisspeptin system. Nevertheless, it is already clear that this new strategy may represent a breakthrough in the field of reproduction control.


Assuntos
Cruzamento/métodos , Kisspeptinas/química , Kisspeptinas/farmacologia , Gado/fisiologia , Reprodução/fisiologia , Sequência de Aminoácidos , Animais , Estabilidade de Medicamentos , Feminino , Hormônio Foliculoestimulante , Cabras , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante , Masculino , Estrutura Molecular , Neurônios/fisiologia , Ovulação/efeitos dos fármacos , Receptores de Kisspeptina-1/agonistas , Receptores de Kisspeptina-1/química , Receptores de Kisspeptina-1/metabolismo , Reprodução/efeitos dos fármacos , Ovinos
20.
Biol Reprod ; 96(3): 635-651, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339602

RESUMO

Neuroendocrine regulation of metabolism and reproduction are tightly interlinked. Nesfatin-1 is an 82 amino acid metabolic peptide derived from nucleobindin-2 (NUCB2). NUCB2 mRNA and protein significantly increase in the hypothalamus of rats during puberty-to-adult transition. Administration of nesfatin-1 modulates circulating LH and testosterone in male rats. However, whether nesfatin-1 acts directly on neurons and gonadotropes remain unknown. In addition, whether reproductive hormones of the hypothalamo-pituitary gonadal axis modulate NUCB2/nesfatin-1 is unclear. To address these, we employed murine hypothalamic (GT1-7) and pituitary (LßT2) cells in vitro. Nucb2 expression, and NUCB2/nesfatin-1 immunoreactivity were observed in both GT1-7 and LßT2 cells, and in the hypothalamus of mice. Nesfatin-1 co-localized GnRH in GT1-7 cells, and in the hypothalamic perikarya of mice. Cells were treated with kisspeptin, GnRH, and estradiol and testosterone, as well as nesfatin-1 for 2, 6 or 24 hours. Synthetic nesfatin-1 increased Kiss1r and Gnrh expression in GT1-7 cells and Lhß in LßT2. Nesfatin-1 increased GnRH and LHß protein expression in GT1-7 and LßT2 at 6-hour post incubation respectively. Both NUCB2 mRNA and protein were increased in GT1-7 cells treated with kisspeptin. Testosterone increased NUCB2 mRNA and protein expression in GT1-7 and LßT2. 17ß-estradiol increased NUCB2 mRNA and protein expression in LßT2. Nesfatin-1 acts directly on hypothalamic neurons and gonadotropes to elicit a generally positive influence on the endocrine milieu regulating reproduction in mice. Reproductive hormones, in turn, modulate brain and pituitary NUCB2/nesfatin-1. In conclusion, we provide additional information to designate nesfatin-1 as a novel, additional factor that helps reproductive success.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animais , Linhagem Celular , Estradiol , Receptor alfa de Estrogênio/metabolismo , Kisspeptinas , Camundongos , Nucleobindinas , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA