Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068921

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.


Assuntos
Antineoplásicos , Flavonoides , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Chem Biol Interact ; 365: 110076, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35948134

RESUMO

Hepatocellular carcinoma (HCC) is a highly fatal disease recognized as a growing global health crisis. Traditional Chinese herbal medicines have been used to treat patients with cancer for many years in China. This study investigated the effects of licochalcone B (LCB), a flavonoid compound isolated from the root of Glycyrrhiza uralensis Fisch., on cell proliferation, DNA damage and TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in HCC cells. Our results showed that LCB inhibited cell proliferation and induced DNA damage, cell cycle arrest and apoptosis. Treatment with LCB significantly inhibited the Akt/mTOR pathway and activated endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, combined treatment with LCB and TRAIL yielded evident enhancements in the viability reduction and apoptosis. LCB upregulated death receptor 4 (DR4) and death receptor 5 (DR5) protein in a concentration- and time-dependent manner. The knockdown of DR5 significantly suppressed TRAIL-induced cleavage of PARP, which was enhanced by LCB. Treatment with an extracellular-regulated kinase (ERK) inhibitor (PD98059) or c-Jun N-terminal kinase (JNK) inhibitor (SP600125) markedly reduced the LCB-induced upregulation of DR5 expression and attenuated LCB-mediated TRAIL sensitization. In summary, LCB exhibits cytotoxic activity through modulation of the Akt/mTOR, ER stress and MAPK pathways in HCC cells and effectively enhances TRAIL sensitivity through the upregulation of DR5 expression in ERK- and JNK-dependent manner. Combination therapy with LCB and TRAIL may be an alternative treatment strategy for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Chalconas , Dano ao DNA , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Serina-Treonina Quinases TOR/genética
3.
Sci Rep ; 12(1): 6282, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428370

RESUMO

The ethanol extract from the wood of Taxus Yunnanensis (TY) induced apoptosis in all cancer cell lines tested, which was mainly due to activation of an extrinsic pathway in human colon cancer DLD-1 cells. The extrinsic pathway was activated by the upregulation of the expression levels of Fas and TRAIL/DR5, which led to the activation of caspase-8. Of note, the machinery of this increase in expression was promoted by the upregulation of MIR32a expression, which silenced MIR34a-targeting E2F3 transcription factor. Furthermore, ectopic expression of MIR32a or siR-E2F3 silencing E2F3 increased Fas and TRAIL/DR5 expression. Thus, the extract activated the extrinsic pathway through the MIR34a/E2F3 axis, resulting in the autocrine and paracrine release of TRAIL, and upregulated expression of death receptors Fas and DR5 in the treated DLD-1 cells, which were functionally validated by Fas immunocytochemistry, and using anti-Fas and anti-TRAIL antibodies, respectively. In vivo, TY showed significant anti-tumor effects on xenografted and syngeneic model mice. The extract may also aid in chemoprevention by selectively making marked tumor cells susceptible to the tumor immunosurveillance system.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Taxus , Animais , Apoptose , Morte Celular , Linhagem Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Taxus/metabolismo , Madeira/metabolismo
4.
Med Oncol ; 38(3): 25, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33586074

RESUMO

Skin cancers are the most common cancers in the world and among the different types of skin cancers, melanoma is the deadliest and incidence is rising. Previous studies have shown promising in vitro and human evidence of kiwifruit exhibiting anti-cancer effects. This study was designed to investigate if kiwifruit extract (KE) has any effect on CRL-11147 melanoma cancer cells and to investigate the possible mechanisms behind the results. The effects of KE on CRL-11147 melanoma cell survival, proliferation, and apoptosis was investigated using clonogenic survival assay, cell proliferation, and caspase-3 activity kits. Potential anti-tumor molecular mechanisms were elucidated using RT-PCR and IHC. Addition of KE decreased CRL-11147 cell colonies percentages indicated by a decreased optical density value of cancer cells when compared to control. Furthermore, treatment with KE increased relative caspase-3 activity in cancer cells, which indicated increased apoptosis of cancer cells. The anti-proliferative effect of KE on cancer cells corresponded with decreased expression of the pro-proliferative molecule Cyclin E and CDK4, while increased expression of the pro-apoptotic molecule TRAILR1 corresponded with the pro-apoptotic effect. KE decreases CRL-11147 melanoma cell growth via downregulation of Cyclin E and CDK4 and upregulation in TRAILR1. Our study suggests a potential use for KE in treatment of melanoma.


Assuntos
Actinidia/química , Ciclina E/metabolismo , Frutas/química , Melanoma/tratamento farmacológico , Proteínas Oncogênicas/metabolismo , Extratos Vegetais/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
5.
Mol Cell Biochem ; 474(1-2): 159-169, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734538

RESUMO

Plants are major source for discovery and development of anticancer drugs. Several plant-based anticancer drugs are currently in clinical use. Fagonia indica is a plant of medicinal value in the South Asian countries. Using mass spectrometry and NMR spectroscopy, several compounds were purified from the F. indica extract. We have used one of the purified compounds quinovic acid (QA) and found that QA strongly suppressed the growth and viability of human breast and lung cancer cells. QA did not inhibit growth and viability of non-tumorigenic breast cells. QA mediated its anticancer effects by inducing cell death. QA-induced cell death was associated with biochemical features of apoptosis such as activation of caspases 3 and 8 as well as PARP cleavage. QA also upregulated mRNA and protein levels of death receptor 5 (DR5). Further investigation revealed that QA did not alter DR5 gene promoter activity, but enhanced DR5 mRNA and protein stabilities. DR5 is one of the major components of the extrinsic pathway of apoptosis. Accordingly, Apo2L/TRAIL, the DR5 ligand, potentiated the anticancer effects of QA. Our results indicate that QA mediates its anticancer effects, at least in part, by engaging DR5-depentent pathway to induce apoptosis. Based on our results, we propose that QA in combination with Apo2L/TRAIL can be further investigated as a novel therapeutic approach for breast and lung cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Triterpenos/farmacologia , Zygophyllaceae/química , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas
6.
Int J Mol Med ; 46(1): 280-288, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32319535

RESUMO

Tumor necrosis factor (TNF)­related apoptosis­inducing ligand (TRAIL), a type II transmembrane protein, is a part of the TNF superfamily of cytokines. Cantharidin, a type of terpenoid, is extracted from the blister beetles (Mylabris genus) used in Traditional Chinese Medicine. Cantharidin elicits antibiotic, antiviral and antitumor effects, and can affect the immune response. The present study demonstrated that a cantharidin and TRAIL combination treatment regimen elicited a synergistic outcome in TRAIL­resistant DU145 cells. Notably, it was also identified that cantharidin treatment initiated the downregulation of cellular FLICE­like inhibitory protein (c­FLIP) and upregulation of death receptor 5 (DR­5), and sensitized cells to TRAIL­mediated apoptosis by initiating autophagy flux. In addition, cantharidin treatment increased lipid­modified microtubule­associated proteins 1A/1B light chain 3B expression and significantly attenuated sequestosome 1 expression. Attenuation of autophagy flux by a specific inhibitor such as chloroquine and genetic modification using ATG5 small interfering RNA abrogated the cantharidin­mediated TRAIL­induced apoptosis. Overall, the results of the present study revealed that cantharidin effectively sensitized cells to TRAIL­mediated apoptosis and its effects are likely to be mediated by autophagy, the downregulation of c­FLIP and the upregulation of DR­5. They also suggested that the combination of cantharidin and TRAIL may be a successful therapeutic strategy for TRAIL­resistant prostate cancer.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Cantaridina/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Autofagia/fisiologia , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica de Transmissão , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteína Sequestossoma-1/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética
7.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623058

RESUMO

Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Diterpenos/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Estrutura Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Chemother Pharmacol ; 84(4): 719-728, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31281953

RESUMO

PURPOSE: Glioblastoma is the most common, malignant and devastating type of primary brain tumor. Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is characterized by its lethality to precancerous and cancerous cells. However, many kinds of tumor cells, including most glioma cells, tend to evade TRAIL-induced apoptosis. Celastrol is a pleiotropic compound from a traditional Chinese medicine that has proven to be useful as a sensitizer for TRAIL treatment. However, the underlying mechanism and role of celastrol in the sensitization of glioma cells remain to be elucidated. METHODS: The viability of glioma cell lines was examined by the CCK-8 assay. The expression of DR5 was detected by reverse transcriptase quantitative real-time PCR. The protein expression of DR5, cleaved caspase-8, cleaved caspase-3 and PARP were measured by western blot. The apoptosis rates and the sub-G1 population were detected by flow cytometry. The cellular morphological changes were assessed by TUNEL apoptosis and Hoechst 33258 staining assays. The knockdown of DR5 expression was conducted by siRNA. RESULTS: In this study, we observed that celastrol treatment inhibited cell viability in a dose-dependent manner, while glioma and normal human astroglial cell lines were resistant to TRAIL treatment. We also observed that the antiproliferative effects of TRAIL in combination with a noncytotoxic concentration of celastrol were significantly greater than those of celastrol or TRAIL alone. In addition, cell death induced by the combination treatment was apoptotic and occurred through the death receptor pathway via activation of caspase-8, caspase-3, and PARP. Furthermore, celastrol upregulated death receptor 5 (DR5) at the mRNA and protein levels, and siRNA-mediated DR5 knockdown reduced the killing effect of the combination drug treatment on glioma cells and reduced the activation of caspase-3, caspase-8 and PARP. CONCLUSIONS: Taken together, the results of our study demonstrate that celastrol sensitizes glioma cells to TRAIL via the death receptor pathway and that DR5 plays an important role in the effects of this cotreatment. The results indicate that this cotreatment is a promising tumor-killing therapeutic strategy with high efficacy and low toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Triterpenos/farmacocinética , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Triterpenos Pentacíclicos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tripterygium , Regulação para Cima
9.
Phytomedicine ; 62: 152950, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31102888

RESUMO

BACKGROUND: The ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to preferentially induce apoptosis in transformed cells while sparing most normal cells is well established. However, the intrinsic and acquired resistance of tumors to TRAIL-induced apoptosis limits its therapeutic applicability. PURPOSE: We investigated the effect of caudatin, a species of C-21 steroidal glycosides isolated from the roots of Cynanchum auriculatum, on TRAIL-induced apoptosis in human breast cancer cells. METHODS: Cell growth inhibition was evaluated by the CCK-8 assay. The cell cycle distribution was assessed by propidium iodide flow cytometry. Apoptosis was determined by TUNEL staining. Protein expression was detected by western blotting analysis. RESULTS: Caudatin enhanced TRAIL-induced apoptosis in human breast cancer cells. This sensitization was achieved by upregulating death receptor 5 (DR5). Knockdown of DR5 abolished the enhancing effect of caudatin on TRAIL responses. The caudatin-induced upregulation of DR5 was accompanied by increased expression of CHOP and phosphorylation of p38 MAPK and JNK. CHOP knockdown blocked caudatin-upregulated DR5 expression. Moreover, cotreatment of breast cancer cells with p38 MAPK and JNK inhibitors significantly counteracted the caudatin-induced expression of DR5. CONCLUSION: Our results showed that caudatin sensitized breast cancer cells to TRAIL-induced apoptosis through activation of CHOP, p38 MAPK and JNK-mediated upregulation of DR5 expression. The combination of TRAIL and caudatin may be a promising therapeutic approach for the treatment of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Glicosídeos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Esteroides/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Phytother Res ; 33(5): 1384-1393, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887612

RESUMO

Evidence suggests that auranofin (AF) exhibits anticancer activity by inhibiting thioredoxin reductase (TrxR). Here, in this study, we have investigated the synergistic effects of AF and morin and their mechanism for the anticancer effects focusing on apoptosis in Hep3B human hepatocellular carcinoma cells. We assessed the anticancer activities by annexin V/PI double staining, caspase, and TrxR activity assay. Morin enhances the inhibitory effects on TrxR activity of AF as well as reducing cell viability. Annexin V/PI double staining revealed that morin/AF cotreatment induced apoptotic cell death. Morin enhances AF-induced mitochondrial membrane potential (ΔΨm) loss and cytochrome c release. Further, morin/AF cotreatment upregulated death receptor DR4/DR5, modulated Bcl-2 family members (upregulation of Bax and downregulation of Bcl-2), and activated caspase-3, -8, and -9. Morin also enhances AF-induced reactive oxygen species (ROS) generation. The anticancer effects results from caspase-dependent apoptosis, which was triggered via extrinsic pathway by upregulating TRAIL receptors (DR4/DR5) and enhanced via intrinsic pathway by modulating Bcl-2 and inhibitor of apoptosis protein family members. These are related to ROS generation. In conclusion, this study provides evidence that morin can enhance the anticancer activity of AF in Hep3B human hepatocellular carcinoma cells, indicating that its combination could be an alternative treatment strategy for the hepatocellular carcinoma.


Assuntos
Auranofina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Flavonoides/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
J Cell Physiol ; 234(8): 13191-13208, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30556589

RESUMO

Osteosarcoma is the most frequent malignant primary bone tumor, and it generally develops a multidrug resistance. Chrysanthemulide A (CA) is a sesquiterpenoid from the herb Chrysanthemum indicum that has demonstrated a great anti-osteosarcoma potential. In this study, CA-induced apoptotic cell death resulted in the activation of the caspase-8-mediated caspase cascade, as evidenced by the cleavage of the substrate protein Bid and the caspase-8 inhibitor Z-VAD-FMK. The CA treatment upregulated the expression of death receptor 5 (DR5) in both whole cells and the cell membrane. Blocking DR5 expression by the small interfering RNA (siRNA) treatment decreased the caspase-8-mediated caspase cascade and efficiently attenuated CA-induced apoptosis, suggesting the critical role of DR5 in CA-induced apoptotic cell death. CA-induced upregulation of the DR5 protein was accompanied by the accumulation of LC3B-II, indicating the formation of autophagosomes. Importantly, DR5 upregulation was mediated by transcriptionally controlled autophagosome accumulation, as blockade of autophagosomes by LC3B or ATG-5 siRNA substantially decreased DR5 upregulation. Furthermore, CA activated the c-Jun N-terminal kinase (JNK) signaling pathway, and treatment with JNK siRNAs or inhibitor SP600125 significantly attenuated CA-mediated autophagosome accumulation and DR5-mediated cell apoptosis. Finally, CA sensitized the osteosarcoma cells to the DR5 ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death. Above all, these results suggest that CA induces apoptosis through upregulating DR5 via JNK-mediated autophagosome accumulation and that combined treatment with CA and TRAIL might be a promising therapy for osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Autofagossomos/efeitos dos fármacos , Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Extratos Vegetais/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Chrysanthemum , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteossarcoma/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Sesquiterpenos/farmacologia , Regulação para Cima
12.
Nutrients ; 10(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297634

RESUMO

Selenium has been intensively studied for the use of cancer prevention and treatment. However, the clinical effects are still plausible. To enhance its efficacy, a combinational study of selenium yeast (SY) and fish oil (FO) was performed in A549, CL1-0, H1299, HCC827 lung adenocarcinoma (LADC) cells to investigate the enhancement in apoptosis induction and underlying mechanism. By sulforhodamine B staining, Western blot and flow cytometric assays, we found a synergism between SY and FO in growth inhibition and apoptosis induction of LADC cells. In contrast, the fetal lung fibroblast cells (MRC-5) were unsusceptible to this combination effect. FO synergized SY-induced apoptosis of A549 cells, accompanied with synergistic activation of AMP-activated protein kinase (AMPK) and reduction of Cyclooxygenase (COX)-2 and ß-catenin. Particularly, combining with FO not only enhanced the SY-elevated proapoptotic endoplasmic reticulum (ER) stress marker CCAAT/enhancer-binding protein homologous protein (CHOP), but also reduced the cytoprotective glucose regulated protein of molecular weight 78 kDa (GRP78). Consequently, the CHOP downstream targets such as phospho-JNK and death receptor 5 were also elevated, along with the cleavage of caspase-8, -3, and the ER stress-related caspase-4. Accordingly, inhibition of AMPK by compound C diminished the synergistic apoptosis induction, and elevated CHOP/GRP78 ratio by SY combined with FO. The AMPK-dependent synergism suggests the combination of SY and FO for chemoprevention and integrative treatment of LADC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma/tratamento farmacológico , Óleos de Peixe/uso terapêutico , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Selênio/uso terapêutico , Fator de Transcrição CHOP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selênio/farmacologia , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Leveduras , beta Catenina/metabolismo
13.
Biomaterials ; 176: 60-70, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860138

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells without toxicity to normal cells. However, the efficiency is greatly limited by its short half-life and wild resistance in various cancer cells. In this study, we reported a micellar hybrid nanoparticle to carry TRAIL ligand (denoted as IPN@TRAIL) for a novel photo-excited TRAIL therapy. These IPN@TRAIL offered increased TRAIL stability, prolonged half-life and enhanced tumor accumulation, monitored by dual mode imaging. Furthermore, IPN@TRAIL nanocomposites enhanced wrapped TRAIL therapeutic efficiency greatly towards resistant cancer cells by TRAIL nanovectorization. More importantly, when upon external laser, these nanocomposites not only triggered tumor photothermal therapy (PTT), but also upregulated the expression of death receptors (DR4 and DR5), resulting in a greater apoptosis mediated by co-delivered TRAIL ligand. Such photo/TRAIL synergistic effect showed its great killing effects in a controllable manner on TRAIL-resistant A549 tumor model bearing mice. Finally, these nanocomposites exhibited rapid clearance without obvious systemic toxicity. All these features rendered our nanocomposites a promising theranostic platform in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Nanocompostos/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia/métodos , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanopartículas de Magnetita/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral
14.
Cell Physiol Biochem ; 45(5): 2054-2070, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29533936

RESUMO

BACKGROUND/AIMS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anti-cancer agent due to its selective toxicity. However, many human non-small cell lung cancer (NSCLC) cells are partially resistant to TRAIL, thereby limiting its clinical application. Therefore, there is a need for the development of novel adjuvant therapeutic agents to be used in combination with TRAIL. METHODS: In this study, the effect of N-acetyl-glucosamine (GlcNAc), a type of monosaccharide derived from chitosan, combined with TRAIL was evaluated in vitro and in vivo. Thirty NSCLC clinical samples were used to detect the expression of death receptor (DR) 4 and 5. After GlcNAc and TRAIL co-treatment, DR expression was determined by real-time PCR and western blotting. Cycloheximide was used to detect the protein half-life to further understand the correlation between GlcNAc and the metabolic rate of DR. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect receptor clustering, and the localization of DR was visualized by immunofluorescence under a confocal microscope. Furthermore, a co-immunoprecipitation assay was performed to analyze the formation of death-inducing signaling complex (DISC). O-linked glycan expression levels were evaluated following DR5 overexpression and RNA interference mediated knockdown. RESULTS: We found that the clinical samples expressed higher levels of DR5 than DR4, and GlcNAc co-treatment improved the effect of TRAIL-induced apoptosis by activating DR5 accumulation and clustering, which in turn recruited the apoptosis-initiating protease caspase-8 to form DISC, and initiated apoptosis. Furthermore, GlcNAc promoted DR5 clustering by improving its O-glycosylation. CONCLUSION: These results uncovered the molecular mechanism by which GlcNAc sensitizes cancer cells to TRAIL-induced apoptosis, thereby highlighting a novel effective agent for TRAIL-mediated NSCLC-targeted therapy.


Assuntos
Acetilglucosamina/farmacologia , Apoptose/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/toxicidade , Células A549 , Acetilglucosamina/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Glicosilação/efeitos dos fármacos , Humanos , Imunoprecipitação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Microscopia Confocal , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos
15.
Anticancer Res ; 37(12): 6593-6599, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29187434

RESUMO

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is the most fatal form of breast cancer due to the shortcomings of therapies. However, recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) is a promising anticancer therapeutic that possesses the capability to promote the induction of apoptosis in cancer cells, but some TNBCs are resistant to rhTRAIL's pro-apoptotic effects. Therefore, a combinatorial treatment approach with silibinin and rhTRAIL was considered in order to sensitize rhTRAIL-resistant TNBCs. MATERIALS AND METHODS: The co-treatment of rhTRAIL and silibinin's impact on apoptosis induction in rhTRAIL-resistant TNBC BT-20 and HCC1937 cells was inspected via application of Annexin V/PI assays and western blot analysis. RESULTS: Silibinin possessed the ability to sensitize the examined rhTRAIL-resistant TNBC cells to rhTRAIL-induced apoptosis through the up-regulation of death receptors 4 and 5 and the down-regulation of survivin transcriptionally. CONCLUSION: Silibinin is a good sensitizing agent for rhTRAIL-resistant TNBCs.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Silimarina/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Silibina , Survivina , Ligante Indutor de Apoptose Relacionado a TNF/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
Biomed Pharmacother ; 92: 491-500, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28575806

RESUMO

A number of drugs as well as lead molecules are isolated from natural sources. Phytol is one of such lead molecule belongs to terpenes group distributed widely in medicinal plants. In the present work, we investigated the cytotoxic behavior of phytol on human lung carcinoma cells (A549). Phytol was found to cause characteristic apoptotic morphological changes and generation of ROS in A549 cells. The mechanism of phytol involved the activation of TRAIL, FAS and TNF-α receptors along with caspase 9 and 3. In silico molecular docking studies revealed that phytol has a good binding affinity with glucose-6-phosphate dehydrogenase (G6PD), which is known to promote tumor proliferation. The ability of phytol to become potential drug candidate has been revealed from the pharmacokinetic study performed in the present study.


Assuntos
Caspase 3/biossíntese , Caspase 9/biossíntese , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Pulmonares/metabolismo , Fitol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Fitol/química , Fitol/uso terapêutico , Estrutura Secundária de Proteína , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor fas/metabolismo
17.
PLoS One ; 12(3): e0174591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355296

RESUMO

Tetraarsenic hexoxide (As4O6) has been used in Korean folk medicines for the treatment of cancer, however its anti-cancer mechanisms remain obscured. Here, this study investigated the anti-cancer effect of As4O6 on SW620 human colon cancer cells. As4O6 has showed a dose-dependent inhibition of SW620 cells proliferation. As4O6 significantly increased the sub-G1 and G2/M phase population, and Annexin V-positive cells in a dose-dependent manner. G2/M arrest was concomitant with augment of p21 and reduction in cyclin B1, cell division cycle 2 (cdc 2) expressions. Nuclear condensation, cleaved nuclei and poly (adenosine diphosphate­ribose) polymerase (PARP) activation were also observed in As4O6-treated SW620 cells. As4O6 induced depolarization of mitochondrial membrane potential (MMP, ΔΨm) but not reactive oxygen species (ROS) generation. Further, As4O6 increased death receptor 5 (DR5), not DR4 and suppressed the B­cell lymphoma­2 (Bcl-2) and X-linked inhibitor of apoptosis protein (XIAP) family proteins. As4O6 increased the formation of AVOs (lysosomes and autophagolysosomes) and promoted the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3)-I to LC3-II in a dose- and time- dependent manner. Interestingly, a specific phosphoinositide 3-kinase (PI3K)/Akt inhibitor (LY294002) augmented the As4O6 induced cell death; whereas p38 mitogen-activated protein kinases (p38 MAPK) inhibitor (SB203580) abrogated the cell death. Thus, the present study provides the first evidence that As4O6 induced G2/M arrest, apoptosis and autophagic cell death through PI3K/Akt and p38 MAPK pathways alteration in SW620 cells.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Autofagia/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Óxidos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antineoplásicos/farmacologia , Trióxido de Arsênio , Western Blotting , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fatores de Tempo
18.
Sci Rep ; 7: 42748, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209994

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers cancer cell death via its association with death receptors on the cell membrane, but exerts negligible side effects on normal cells. However, some non-small-cell lung carcinoma (NSCLC) patients exhibited resistance to TRAIL treatment in clinical trials, and the mechanism varies. In this study, we described for the first time that toosendanin (TSN), a triterpenoid derivative used in Chinese medicine for pain management, could significantly sensitize human primary NSCLC cells or NSCLC cell lines to TRAIL-mediated apoptosis both in vitro and in vivo, while showing low toxicity against human primary cells or tissues. The underlying apoptotic mechanisms involved upregulation of death receptor 5 (DR5) and CCAAT/enhancer binding protein homologous protein, which is related to the endoplasmic reticulum stress response, and is further associated with reactive oxygen species generation and Ca2+ accumulation. Surprisingly, TSN also induced autophagy in NSCLC cells, which recruited membrane DR5, and subsequently antagonized the apoptosis-sensitizing effect of TSN. Taken together, TSN can be used to sensitize tumors and the combination of TRAIL and TSN may represent a useful strategy for NSCLC therapy; moreover, autophagy serves as an important drug resistance mechanism for TSN.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico
19.
Sci Rep ; 6: 32582, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581364

RESUMO

We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as "hairy groundcherry" in English and "Deng-Long-Cao" in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Vitanolídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Deleção de Genes , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Physalis/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Transcrição CHOP/agonistas , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 11(7): e0159430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27453990

RESUMO

Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and ß-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. ß-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Betula/química , Casca de Planta/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Triterpenos/isolamento & purificação , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA