Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.154
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646751

RESUMO

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Assuntos
Caragana , Carbono , Florestas , Nitrogênio , Compostos Orgânicos , Fósforo , Solo , China , Solo/química , Carbono/análise , Caragana/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Compostos Orgânicos/análise , Nutrientes/análise , Recuperação e Remediação Ambiental/métodos , Sequestro de Carbono , Ecossistema
2.
Environ Res ; 251(Pt 1): 118545, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431067

RESUMO

An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.


Assuntos
Mineração , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Ácidos , Água Subterrânea/química , Filtração/métodos , Concentração de Íons de Hidrogênio
3.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 739-757, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545974

RESUMO

Owing to human activities and industrial production, petroleum pollution has become a serious environmental issue. Microbial remediation technology, characterized by its eco-friendly characteristics, has drawn significant attention in petroleum pollution remediation. The application of molecular biology technology has led to a drastic revolution in microbial remediation technology, providing resources for the development of highly efficient degrading agents. However, limitations such as the lack of precision in species annotation and the limited detection sensitivity still exist. Other microbial remediation technologies also have substantial potential in enhancing the degradation efficiency of petroleum pollutants and reducing their environmental harm, especially biosurfactants and bio-stimulants, which offer relatively shorter remediation periods and lower costs, promising large-scale application in the future. Moreover, the combination of molecular biology and other microbial remediation technologies may become an effective tool for petroleum pollutant degradation. This review summarized the application of molecular biology methods in petroleum polluted environments, reviewed the recent research progress on microbial remediation techniques for petroleum-contaminated sites, discussed the remediation effects of these microbial remediation techniques, and proposed the future development direction of microbial remediation technology.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Poluentes do Solo , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 31(13): 20499-20509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374508

RESUMO

In this study, nano-zero-valent iron/copper was synthesized by green tea extracts (GT-nZVI/Cu) and produced a stable suspension than nano-zero-valent iron synthesized by green tea extracts (GT-nZVI) injected into Cr(VI)-containing soil column. The equilibrium 1D-CDE model was successfully used to fit the penetration curves of Fe(tot), Fe(aq), and Fe(0) in order to determine the relevant parameters. The hydrodynamic dispersion coefficient of chromium-contaminated soil was 0.401 cm2·h-1, and the pore flow rate was 0.144 cm·h-1. The stable C/C0 of Fe(tot), Fe(aq), and Fe(0) in the effluent were retarded to 0.39, 0.79, and 0.11, respectively, compared to a ratio of 1 for the concentration of the tracer Cl- in the effluent to the concentration in the influent. Additionally, the 1D-CDE model describes the migration behavior of Cr(VI) with a high R2 (> 0.97). The obtained blocking coefficients declined gradually with increasing concentration of GT-nZVI/Cu suspension and decreasing concentration of Cr(VI). The content of reduced chromium in the soil decreased from 2.986 to 1.121 after remediation, while the content of more stable oxidizable chromium and residual chromium increased from 2.975 and 20.021 to 16.471 and 27.612. The phytotoxicity test showed that mung bean seeds still had a germination rate of 90% (control of 100%), root length of 29.63 mm (control of 35.25 mm), and stem length of 17.9 cm (control of 18.96 cm) after remediation with GT-nZVI/Cu. These indicated that GT-nZVI/Cu was effective in immobilizing Cr(VI) in the soil column and reduced the ecological threat. This study provides an analytical basis and theoretical model for the migration of chromium-contaminated soil in practical application.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Cobre , Poluentes do Solo/análise , Cromo/análise , Solo , Ferro , Chá , Extratos Vegetais , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 31(13): 19123-19147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379040

RESUMO

The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanopartículas Metálicas , Metais Pesados , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Ecossistema , Nanopartículas/química , Corantes/química , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos
6.
J Hazard Mater ; 468: 133813, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402679

RESUMO

This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/metabolismo , Metais Pesados/análise , Biodegradação Ambiental , Solo/química , Inteligência Artificial
7.
Sci Total Environ ; 920: 171020, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369133

RESUMO

The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Humanos , Parabenos/metabolismo , Ecossistema , Luz
8.
Environ Geochem Health ; 46(2): 63, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302793

RESUMO

This study investigates the effect of boundary conditions and treatment-time on the electro-desalination of artificially-contaminated soil. The effect of ion exchange membranes (IEM), calcium chloride (CaCl2), and ethylenediaminetetraacetic acid (EDTA) on the removal of salt (i.e., Na+, Cl-, and Ca2+) and metal (i.e., Co2+ and Fe2+) ions from the soil by electrokinetic (EK) was studied. The outcomes demonstrate that an increase in treatment-time decreases the electroosmosis and ion removal rate, which might be attributed to the formation of acid-base fronts in soil, except in the IEM case. Because a high pH jump and electroosmotic flow (EOF) of water were not observed within the soil specimen due to the IEM, the removal of ions was only by diffusion and electromigration. The collision of acid-base fronts produced a large voltage gradient in a narrow soil region with a reduced electric field (EF) in its remaining parts, causing a decrease in EOF and ion transport by electromigration. The results showed that higher electroosmosis was observed by using CaCl2 and EDTA; thus, the removal rate of Co2+, Na+, and Ca2+ was greater than Cl- due to higher EOF. However, for relatively low EOF, the removal of Cl- exceeded that of Co2+, Na+, and Ca2+, possibly due to a lack of EOF. In addition, the adsorption of Fe2+ in soil increased with treatment-time due to the corrosion of the anode during all EK experiments except in the case of IEM, where an anion exchange membrane (AEM) was introduced at the anode-soil interface.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Ácido Edético , Solo , Cloreto de Cálcio , Íons , Poluentes do Solo/análise
9.
Water Res ; 252: 121195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290236

RESUMO

Successful in situ chemical oxidation (ISCO) applications require real-time monitoring to assess the oxidant delivery and treatment effectiveness, and to support rapid and cost-effective decision making. Existing monitoring methods often suffer from poor spatial coverage given a limited number of boreholes in most field conditions. The ionic nature of oxidants (e.g., permanganate) makes time-lapse electrical resistivity tomography (ERT) a potential monitoring tool for ISCO. However, time-lapse ERT is usually limited to qualitative analysis because it cannot distinguish between the electrical responses of the ionic oxidant and the ionic products from contaminant oxidation. This study proposed a real-time quantitative monitoring approach for ISCO by integrating time-lapse ERT and physics-based reactive transport models (RTM). Moving past common practice, where an electrical-conductivity anomaly in an ERT survey would be roughly linked to concentrations of anything ionic, we used PHT3D as our RTM to distinguish the contributions from the ionic oxidant and the ionic products and to quantify the spatio-temporal evolution of all chemical components. The proposed approach was evaluated through laboratory column experiments for trichloroethene (TCE) remediation. This ISCO experiment was monitored by both time-lapse ERT and downstream sampling. We found that changes in inverted bulk electrical conductivity, unsurprisingly, did not correlate well with the observed permanganate concentrations due to the ionic products. By integrating time-lapse ERT and RTM, the distribution of all chemical components was satisfactorily characterized and quantified. Measured concentration data from limited locations and the non-intrusive ERT data were found to be complementary for ISCO monitoring. The inverted bulk conductivity data were effective in capturing the spatial distribution of ionic species, while the concentration data provided information regarding dissolved TCE. Through incorporating multi-source data, the error of quantifying ISCO efficiency was kept at most 5 %, compared to errors that can reach up to 68 % when relying solely on concentration data.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Compostos de Manganês , Óxidos , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Oxirredução , Oxidantes , Tomografia
10.
Environ Pollut ; 342: 122893, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952924

RESUMO

Petroleum-impacted soils pose several hazards and require fast, effective, and versatile remediation techniques. Electron beam irradiation provides a novel means of heating soil and inducing non-equilibrium chemical reactions and has previously been applied to environmental remediation. In this work a scalable process for remediation of petroleum-impacted soils using a 100 kW, 3 MeV industrial electron beam is investigated. The process involves conveying impacted soil through a beam at a controllable rate to achieve a desired dose of approximately 1000 kGy. Reductions to less than 1% Total Petroleum Hydrocarbon (TPH) content from an initial TPH of 3.3% were demonstrated for doses of 710-1370 kGy. These reductions were achieved in in conditions equivalent to 4 m3 per hour, demonstrating the applicability of this technique to remediation sites. TPH reduction appeared to be temperature-dependent but not heavily dependent on dose rate, with reductions of 96% achieved for a dose of 1370 kGy and peak temperature of 540 °C. The performance of the process at high dose rates suggests that it can be incorporated into remediation of sites for which a high rate of material processing is required with a relatively small device footprint.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Solo/química , Elétrons , Poluentes do Solo/análise , Hidrocarbonetos/química , Microbiologia do Solo , Biodegradação Ambiental
11.
Enzyme Microb Technol ; 174: 110369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101243

RESUMO

The entrance of some toxic and hazardous chemical agents such as antibiotics, pesticides, and herbicides into the environment can cause various problems to human health and the environment. In recent years, researchers have considered the use of electrostimulation in the processes of microbial metabolism and biological systems for the treatment of pollutants in the environment. Although several electrostimulation reports have been presented for pollutant removal, little attention has been paid to alternative current (AC) biostimulation. This study presents a systematic review of microbial electrostimulation using bioelectrochemical systems supplied with AC. The utilization of alternating current bioelectrochemical systems (ACBESs) has some advantages such as the provide of appropriate active biofilms in the electrodes due to the cyclical nature of the current and energy transfer in an appropriate manner on the electrode surfaces. Moreover, the ACBESs can reduce hydraulic time (HRT) under optimal conditions and reduce the cost of converting electricity using AC. In microbial electrostimulation, amplitude (AMPL), waveform, C/N, and current have a significant effect on increasing the removal efficiency of the pollutants. The obtained results of the meta-analysis illustrated that various pollutants such as phenol, antibiotics, and nitrate have been removed in an acceptable range of 96% using the ACBESs. Therefore, microbial electrostimulation using AC is a promising technology for the decomposition and removal of various pollutants. Moreover, the ACBESs could provide new opportunities for promoting various bioelectrochemical systems (BESs) for the production of hydrogen or methane.


Assuntos
Fontes de Energia Bioelétrica , Recuperação e Remediação Ambiental , Humanos , Eletricidade , Eletrodos , Poluentes Ambientais , Poluição Ambiental
12.
Environ Geochem Health ; 45(12): 9691-9707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812370

RESUMO

This study focuses on a flushing-electrokinetic remediation technology of hexavalent chromium from the chromium slag dump site. A suspension of nanoscale zero-valent iron/nickel fabricated from green tea (GT-nZVI/Ni), was employed as an eluent to degrade Cr (VI) and enhance the remediation effectiveness of a single EK. The removal efficiency of Cr (VI) was compared under different voltages, electrode spacings and pH values of the anolyte. The results demonstrated that the combined flushing and EK achieved a removal rate of Cr (VI) in the soil throughout all the experiments ranging from 83.08 to 96.97% after 120 h. The optimal result was obtained when the voltage was 28 V, the pH value of anolyte was 3 and the electrode spacing was 15 cm. The removal of Cr (VI) reached 91.49% and the energy consumption was 0.32606 kW·h·g-1. The underlying mechanisms responsible for the removal of Cr (VI) by GT-nZVI/Ni flushing-EK primarily involved electromigration, reduction and adsorption co-precipitation processes. The fractionation analysis of Cr (VI) concentration in the soil after remediation showed that the presence of GT-nZVI/Ni facilitated the conversion of Cr (VI) into oxidizable and residual states with low mobility and toxicity. The results of toxicity characteristic leaching procedure (TCLP) indicated that the leaching concentration of Cr (VI) was below 1 mg·L-1, complying with the standards set by the Environmental Protection Agency. Additionally, the phytotoxicity testing revealed that the germination index (GI) of the remediated soil reached 54.75%, indicating no potential harm to plants.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Ferro/análise , Níquel/análise , Chá , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Solo , Cromo/toxicidade , Cromo/análise , Adsorção
13.
Environ Sci Pollut Res Int ; 30(41): 93491-93518, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572250

RESUMO

Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Tecnologia , Petróleo/metabolismo
14.
J Hazard Mater ; 459: 132102, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531758

RESUMO

Remediation of petroleum-contaminated soil is a widely concerned challenge. As an ecofriendly method, the performance improvement of indigenous microbial degradation is facing the bottleneck. In this study, a strain with high efficiency of petroleum degradation was isolated from the petroleum-contaminated soil and identified and named as Bacillus sp. Z-13. The strain showed the ability to produce lipopeptide surfactant which could improve 66% more petroleum hydrocarbons eluted. Strain Z-13 and its biosurfactant exhibited broad environmental adaptability to salinity (0-8%), pH (6-9) and temperature (15-45 °C). With the addition of strain Z-13 and the stimulation of NH4Cl, up to 59% of the petroleum in the contaminated soil was removed at the carbon to nitrogen ratio of 10. Microbial community analysis showed that petroleum-degrading bacteria, represented by Bacillus, became the dominant species at genus level and played an important role in the remediation. Additionally, ammonium stimulation facilitated both pathways of ammonium assimilation and nitrification in native microorganisms to achieve efficient degradation of petroleum hydrocarbons. This study could provide a promising approach for stable, environmental-friendly and efficient remediation of petroleum-contaminated soil.


Assuntos
Bacillus , Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Bacillus/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Solo/química , Nitrogênio/metabolismo , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo
15.
J Environ Manage ; 344: 118601, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454451

RESUMO

The Kuwaiti oil fire during the first Gulf War resulted in the formation of approximately 300 "oil lakes" of varying sizes that covered over 110 km2 of the desert land. This threatens the fragile desert ecosystems and human health. Following the award of over US$2 billion to the State of Kuwait by the United Nations, large-scale remediation of the oil-contaminated soils has now been on the agenda. However, how to implement the remediation program in a cost-effective way represents a major challenge. In this study, cost-effective remediation strategies were developed based on field and laboratory investigations in a typical oil lake area. Overall, most of the lighter petroleum hydrocarbons (PHCs) were lost due to evaporation. Long-chain aliphatic PHCs dominated the PHCs in the investigated oil lake area. This has implications for developing remediation strategies. Toxicity assessment results showed that the majority of soils pose a low environmental risk with a hazard index <1. Therefore, intensive treatment of these PHCs may not be necessary for these soils. Although active treatment methods are needed to remove the contaminants as soon as practical for the relatively small areas of high contamination, more cost-effective passive methods should be considered to minimize the remedial costs for the larger area of the non-hotspot areas. Given the extremely low risk in terms of groundwater contamination by the contaminated soils, it may not be necessary to remove the soils from the contaminated sites. A low-cost capping method should be sufficient to minimize human exposure to the PHC-contaminated soils.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Humanos , Kuweit , Guerra do Golfo , Ecossistema , Análise Custo-Benefício , Poluentes do Solo/análise , Hidrocarbonetos/análise , Solo , Biodegradação Ambiental
16.
Chemosphere ; 334: 138936, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37182711

RESUMO

Self-sustaining smoldering is an emerging technology for nonaqueous-phase liquid remediation; however, it is rarely applied for Cr(VI)-contaminated soil treatment. In this study, self-sustaining smoldering using rice straw (RS) as a surrogate fuel was applied to remediate Cr(VI)-contaminated soil for the first time. Thirteen one-dimensional vertical smoldering experiments were conducted to investigate the effectiveness of the smoldering method and the effects of key experimental parameters on smoldering remediation performance. Smoldering was observed to be self-sustaining within the range of RS particle size from <0.16 to 2.00-4.00 mm, airflow from 0.2 to 1 m3/h, and Cr(VI)-impacted soil/RS ratios from 2:1 to 6:1. The Cr(VI)-contaminated soil was effectively remediated, which was confirmed by lowered Cr(VI) contents in the treated samples (decreased by 52.22-86.57%) and the elevated fraction of Cr oxidizable and residual form (increased by 1.14-3.30 and 2.97-4.00 times, respectively), compared to the control. The reducing gases (CO and CxHy) generated during the smoldering played a crucial role in the remediation process. The contents of available P and K in the remediated soil containing the remaining biochar and ash increased, thus improving soil reusability. Hence, this study shows that smoldering with RS as supplemental fuel is a promising Cr(VI)-contaminated soil management technique without supplying substantial external energy.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cromo/análise , Poluição Ambiental , Solo , Poluentes do Solo/análise
17.
Water Res ; 239: 120055, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207454

RESUMO

The management of sediment-water interfaces, especially bed stability, is essential for controlling accumulated contaminants in the sediment. In this study, the relationship between sediment erosion and phosphorus (P) release under the remediation strategy of contaminated sediment backfilling (CSBT) was explored through a flume experiment, i.e. the dredged sediment was calcined into ceramsite after dewatering and detoxification and then backfilled to the dredged area for sediment capping, thus avoiding the introduction of foreign materials via in-situ remediation and the large-scale land occupation associated with ex-situ remediation. Acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) were used to measure the vertical distributions of flow velocity and sediment concentration in the overlying water, respectively, and diffusive gradients in thin films (DGT) was used to measure the P distribution in the sediment. The results revealed that improving bed stability from CSBT can considerably improve the robustness of sediment-water interface and reduce sediment erosion by more than 70%. The corresponding P release from the contaminated sediment could be inhibited with an inhibition efficiency as high as 80%. CSBT is a potent strategy for managing contaminated sediment. This study provides a theoretical reference for controlling sediment pollution, further supporting river and lake ecological management and environmental restoration.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fósforo , Sedimentos Geológicos , Lagos , Água
18.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
19.
Environ Sci Pollut Res Int ; 30(30): 74459-74484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37219770

RESUMO

Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.


Assuntos
Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Estudos Prospectivos , Inteligência Artificial , Poluentes do Solo/análise , Solo/química , Nanotecnologia , Microbiologia do Solo , Hidrocarbonetos
20.
Environ Sci Pollut Res Int ; 30(24): 65976-65989, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093393

RESUMO

Uranium is an important strategic resource, and its safe and efficient development and utilization are of great significance to ensuring a nation's energy supply and strategic security. Sandstone-type uranium ore is commonly mined by CO2 + O2 in situ leaching, for which understanding the coupling mechanism between the hydrodynamic and chemical fields is key to predicting uranium leaching. This study focused on a coal-uranium ore deposit in China. A convection and dispersion model of the solute transport by in situ leaching was constructed in COMSOL, and a thermodynamic model of CO2 + O2 in situ leaching in sandstone-type uranium ore was constructed in PHREEQC. The two models were coupled to simulate the reactive transport and dynamic leaching processes of uranium by CO2 + O2 in situ leaching. A sensitivity analysis was performed to quantitatively analyze the effects of different model parameters on the uranium leaching efficiency and uranium contamination remediation. The results showed that the coupled model could simulate and predict the reaction and transport of uranium. The sensitivity analysis indicated that the production rate and the injected CO2 and O2 concentrations are the key parameters that control the uranium leaching efficiency, followed by the formation permeability and injection rate. The uranium leaching efficiency does not increase monotonically with the formation permeability and production rate. The results also indicated that natural dilution is insufficient for remediating uranium-contaminated groundwater, but the remediation efficiency can be improved by increasing solution extraction. The results of this study can be used to develop guidelines for the safe and efficient development and utilization of uranium ore while protecting the ecological environment.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Urânio , Poluentes Radioativos da Água , Urânio/análise , Dióxido de Carbono/análise , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA