Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 153(4): 2482, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092950

RESUMO

Physiological and psychoacoustic studies of the medial olivocochlear reflex (MOCR) in humans have often relied on long duration elicitors (>100 ms). This is largely due to previous research using otoacoustic emissions (OAEs) that found multiple MOCR time constants, including time constants in the 100s of milliseconds, when elicited by broadband noise. However, the effect of the duration of a broadband noise elicitor on similar psychoacoustic tasks is currently unknown. The current study measured the effects of ipsilateral broadband noise elicitor duration on psychoacoustic gain reduction estimated from a forward-masking paradigm. Analysis showed that both masker type and elicitor duration were significant main effects, but no interaction was found. Gain reduction time constants were ∼46 ms for the masker present condition and ∼78 ms for the masker absent condition (ranging from ∼29 to 172 ms), both similar to the fast time constants reported in the OAE literature (70-100 ms). Maximum gain reduction was seen for elicitor durations of ∼200 ms. This is longer than the 50-ms duration which was found to produce maximum gain reduction with a tonal on-frequency elicitor. Future studies of gain reduction may use 150-200 ms broadband elicitors to maximally or near-maximally stimulate the MOCR.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Humanos , Psicoacústica , Cóclea/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Reflexo/fisiologia , Fatores de Tempo , Estimulação Acústica , Mascaramento Perceptivo/fisiologia
2.
Noise Health ; 25(116): 1-7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006113

RESUMO

Objectives: Noise-induced cochlear synaptopathy is studied extensively in animal models. The diagnosis of synaptopathy in humans is challenging and the roles of many noninvasive measures in identifying synaptopathy are being explored. The acoustic middle ear muscle reflex (MEMR) can be considered as a vital tool since noise exposure affects the low-spontaneous rate fibers that play an important role in elicitation of MEMR. The present study aimed at measuring MEMR threshold and MEMR strength. Design: The study participants were divided into two groups. All the participants had normal-hearing thresholds. The control group consisted of 25 individuals with no occupational noise exposure whereas noise exposure group had 25 individuals who were exposed to occupational noise of 85 dBA for a minimum period of 1 year. MEMR threshold and strength was assessed for pure tones (500 Hz and 1000 Hz) and broadband noise. Results: The results showed that the MEMR threshold was similar in both the groups. MEMR strength was reduced in noise exposure group compared to control group. Conclusions: The results of the study suggest that MEMR strength could be used as a sensitive measure in identifying cochlear synaptopathy with careful consideration of the stimulus characteristics.


Assuntos
Orelha Média , Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Animais , Humanos , Estimulação Acústica , Limiar Auditivo/fisiologia , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Músculos , Reflexo/fisiologia , Ruído Ocupacional/efeitos adversos
3.
Neurosci Lett ; 806: 137228, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37031944

RESUMO

Pain facilitation contributes to chronic pain conditions. Transcutaneous electrical nerve stimulation (TENS) is used to alleviate pain. The effects of conventional TENS on chronic pain have been limited, and its effects on pain facilitation are controversial. Because the analgesic effects of TENS depend on the setting parameters (e.g., pulse intensities or treatment time), the optimal TENS settings to maximize analgesic effects under various pain conditions have been investigated. High-intensity TENS (HI-TENS), which involves tolerable-level pulse intensities for a short duration, is another conventional TENS method that used to alleviate pain. However, the effects of HI-TENS on pain facilitation remain unclear. The temporal summation of pain is widely used to evaluate pain facilitation, and the temporal summation-nociceptive flexion reflex (TS-NFR) is a neuropsychological parameter that can be used to evaluate pain facilitation. We aimed to investigate the effects of HI-TENS on the TS-NFR in healthy participants. Participants were randomly allocated into HI-TENS (n = 15) and control groups (n = 16). HI-TENS was administered at the left lateral lower leg for 1 min. The TS-NFR elicited by three noxious stimuluses at the left sural nerve was obtained from electromyography of the left biceps femoris. The nociceptive flexion reflex (NFR) was obtained by a single noxious stimulus. We measured the thresholds of the NFR and the TS-NFR at baseline and post-intervention. The application of HI-TENS significantly increased the NFR threshold (p = 0.013) but not the TS-NFR threshold (p > 0.05). These results suggest that HI-TENS does not inhibit pain facilitation.


Assuntos
Nociceptividade , Dor , Reflexo , Estimulação Elétrica Nervosa Transcutânea , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Análise de Variância , Voluntários Saudáveis , Nociceptividade/fisiologia , Dor/fisiopatologia , Limiar da Dor/fisiologia , Reflexo/fisiologia , Resultado do Tratamento
4.
J Speech Lang Hear Res ; 66(4): 1428-1443, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36940474

RESUMO

PURPOSE: Studies in lower mammals demonstrate enhancement of the medial olivocochlear reflex (MOCR) following noise exposure. A similar effect may occur in humans, and there is some evidence of an individual's acoustic history affecting the MOCR. The current work evaluates the relationship between an individual's annual noise exposure history and their MOCR strength. Given the potential role of the MOCR as a biological hearing protector, it is important to identify factors associated with MOCR strength. METHOD: Data were collected from 98 normal-hearing young adults. Annual noise exposure history was estimated using the Noise Exposure Questionnaire. MOCR strength was assayed using click-evoked otoacoustic emissions (CEOAEs) measured with and without noise presented to the contralateral ear. MOCR metrics included the MOCR-induced otoacoustic emission (OAE) magnitude shift and phase shift. A CEOAE signal-to-noise ratio (SNR) of at least 12 dB was required for estimation of the MOCR metrics. Linear regression was applied to evaluate the relationship between MOCR metrics and annual noise exposure. RESULTS: Annual noise exposure was not a statistically significant predictor of the MOCR-induced CEOAE magnitude shift. However, annual noise exposure was a statistically significant predictor of the MOCR-induced CEOAE phase shift-the MOCR-induced phase shift decreased with increasing noise exposure. Additionally, annual noise exposure was a statistically significant predictor of OAE level. CONCLUSIONS: Findings contrast with recent work that suggests MOCR strength increases with annual noise exposure. Compared with previous work, data for this study were collected using more stringent SNR criteria, which is expected to increase the precision of the MOCR metrics. Additionally, data were collected for a larger subject population with a wider range of noise exposures. Whether findings generalize to other exposure durations and levels is unknown and requires future study.


Assuntos
Cóclea , Núcleo Olivar , Adulto Jovem , Humanos , Cóclea/fisiologia , Estimulação Acústica , Emissões Otoacústicas Espontâneas/fisiologia , Reflexo/fisiologia
5.
Eur J Oral Sci ; 131(2): e12917, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749095

RESUMO

Although eicosapentaenoic acid (EPA) application in vitro inhibits voltage-gated Na+ (Nav) channels in excitable tissues, the acute local effect of EPA on the jaw-opening reflex in vivo remains unknown. The aim of the present study was to determine whether local administration of EPA to adult male Wistar rats could attenuate the excitability of the jaw-opening reflex in vivo, including nociception. The jaw-opening reflex evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1×-5× threshold). At 3×, local administration of EPA dose-dependently inhibited the dEMG response, lasting 60 min, with maximum inhibition observed within approximately 10 min. The mean magnitude of dEMG signal inhibition by EPA was almost equal to that observed with a local anesthetic, 1% lidocaine, and with a half dose of lidocaine plus a half dose of EPA. These findings suggest that EPA attenuates the jaw-opening reflex, possibly by blocking Nav channels of primary nerve terminals, and strongly support the idea that EPA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception.


Assuntos
Ácido Eicosapentaenoico , Reflexo , Ratos , Masculino , Animais , Ratos Wistar , Ácido Eicosapentaenoico/farmacologia , Reflexo/fisiologia , Eletromiografia , Lidocaína/farmacologia , Estimulação Elétrica , Arcada Osseodentária/fisiologia
6.
Int J Audiol ; 62(2): 110-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35195043

RESUMO

OBJECTIVE: The medial olivocochlear (MOC) reflex provides unmasking of sounds in noise, but its contribution to speech-in-noise perception remains unclear due to conflicting results. This study determined associations between MOC reflex strength and sentence recognition in noise in individuals with normal hearing. DESIGN: MOC reflex strength was assessed using contralateral inhibition of transient-evoked otoacoustic emissions (TEOAEs). Scores on the AzBio sentence task were quantified at three signal-to-noise ratios (SNRs). Additionally, slope and threshold of the psychometric function were computed. Associations between MOC reflex strength and speech-in-noise outcomes were assessed using Spearman rank correlations. STUDY SAMPLE: Nineteen young adults with normal hearing participated, with data from 17 individuals (mean age = 21.8 years) included in the analysis. RESULTS: Contralateral noise significantly decreased the amplitude of TEOAEs. A range of contralateral inhibition values was exhibited across participants. Scores increased significantly with increasing SNR. Contrary to hypotheses, there were no significant correlations between MOC reflex strength and score, nor were there any significant correlations between MOC reflex strength and measures of the psychometric function. CONCLUSIONS: Results found no significant monotonic relationship between MOC reflex strength and sentence recognition in noise. Future work is needed to determine the functional role of the MOC reflex.


Assuntos
Núcleo Olivar , Emissões Otoacústicas Espontâneas , Adulto Jovem , Humanos , Adulto , Emissões Otoacústicas Espontâneas/fisiologia , Cóclea/fisiologia , Ruído/efeitos adversos , Reflexo/fisiologia , Estimulação Acústica
7.
Ear Hear ; 44(3): 544-557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36477401

RESUMO

OBJECTIVES: The objective of the study was to quantify inter-subject variability in the dependence of the medial-olivocochlear reflex (MOCR) on noise bandwidth. Of specific interest was whether inter-subject variability in MOCR dependence on bandwidth explained variability in the MOCR response elicited by wideband noise. DESIGN: Thirty-two young adults with normal hearing participated in the study. Click-evoked otoacoustic emissions were measured in the ipsilateral ear with and without noise presented in the contralateral ear. Presentation of contralateral noise served to activate the MOCR. The MOCR was activated using five different noise stimuli with bandwidths ranging from 1- to 5-octaves wide (center frequency of 2 kHz; bandwidth incremented in 1-octave steps). Noise spectral levels (19.6 dB SPL/Hz) were held constant across all bandwidths. MOCR metrics included the normalized-percent change in the otoacoustic emission (OAE), the MOCR-induced OAE magnitude shift, and the MOCR-induced OAE phase shift. Linear mixed-effect models were fit to model the dependence of MOCR-induced OAE magnitude and phase changes on noise bandwidth. The use of a mixed-effect modeling approach allowed for the estimation of subject-specific model parameters that capture on- and off-frequency contributions to the MOCR effects. Regression analysis was performed to evaluate the predictive capacity of subject-specific model parameters on the MOCR response elicited by wideband noise. RESULTS: All OAE-based MOCR metrics increased as the noise bandwidth increased from 1- to 5-octaves wide. The dependence of MOCR-induced OAE magnitude and phase shifts on activator bandwidth was well approximated using a linear model with intercept and slope terms. On average, MOCR-induced magnitude and phase shifts increased at a rate of 0.3 dB/octave and 0.01 cycles/octave, respectively, as bandwidth extended beyond the predicted region of OAE generation. A statistically significant random effect of subject was found for both the intercept and slope parameter of each model. Subject-specific slope estimates were statistically significant predictors of a repeated measure of the wideband MOCR response. A higher slope was predictive of larger wideband MOCR effects. CONCLUSIONS: MOCR-induced changes to the OAE are greatest when the MOCR is elicited using wideband noise. Variability in the process of spectral integration within the MOCR pathway appears to explain, in part, inter-subject variability in OAE-based estimates of the MOCR response elicited by wideband noise.


Assuntos
Cóclea , Reflexo , Adulto Jovem , Humanos , Cóclea/fisiologia , Estimulação Acústica , Reflexo/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Ruído
8.
Int Urol Nephrol ; 55(4): 853-859, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534220

RESUMO

OBJECTIVE: To determine the efficacy of novel wearable transcutaneous tibial nerve stimulation (TTNS) device on bladder reflex in cats compared to implantable tibial nerve stimulation (ITNS). MATERIALS AND METHODS: Two self-adhesive electrodes of the TTNS device were placed at the left leg, and ITNS was applied to stimulate the tibial nerve of the right leg, respectively. The intensity threshold (T) was defined as inducing observable toe movement. Multiple cystometrograms (CMGs) with normal saline (NS) infusion were performed to determine the inhibitory effects of TTNS and ITNS on the micturition reflex. RESULTS: TTNS at 4 times T (4 T), 6 times T (6 T), and the maximum output current intensity 24 mA significantly increased the bladder capacity (BC) compared to the control level (8.70 ± 2.46 ml) (all p < 0.05); however, there was no statistical significance among the three intensities. At the same time, ITNS at 2 times T (2 T), 4 T, 6 T, and the current intension 24 mA could significantly increase the BC compared to the control level (all p < 0.05). Likewise, no significant difference was observed among the four intensities (p > 0.05). The T values of TTNS were higher than those of ITNS (p = 0.02). The inhibitory effects of TTNS and ITNS revealed no significant difference at their respective 2 T, 4 T, 6 T, and 24 mA. Neither TTNS nor ITNS changed the contraction duration and amplitude (all p > 0.05). CONCLUSIONS: TTNS was effective in increasing BC. The non-invasive neuromodulation technique could achieve a similar effect as ITNS.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Bexiga Urinária Hiperativa , Gatos , Animais , Bexiga Urinária/inervação , Bexiga Urinária Hiperativa/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Tibial/fisiologia , Reflexo/fisiologia
9.
J Acoust Soc Am ; 152(4): 2398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319231

RESUMO

This study investigated whether visual attention affects the reliability (i.e., repeatability) of transiently evoked otoacoustic emission (TEOAE) magnitudes or of medial olivocochlear reflex (MOCR) estimates. TEOAEs were measured during three visual attentional conditions: control (subject were seated with eyes closed); passive (subjects looked at a pattern of squares on a computer screen); and active (subjects silently counted an occasionally inverted pattern). To estimate reliability, the whole recording session was repeated the next day. The results showed that visual attention does not significantly affect TEOAE or MOCR magnitudes-or their reliability. It is therefore possible to employ visual stimuli (e.g., watching a silent movie) during TEOAE experiments, a procedure sometimes used during testing to prevent subjects from falling asleep or to keep children still and quiet.


Assuntos
Emissões Otoacústicas Espontâneas , Reflexo , Criança , Humanos , Reprodutibilidade dos Testes , Estimulação Acústica , Emissões Otoacústicas Espontâneas/fisiologia , Reflexo/fisiologia , Cóclea/fisiologia
10.
Neuroreport ; 33(18): 786-790, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36367795

RESUMO

Our purpose was to study the expression of purinergic receptors 2X2 (P2X2) and purinergic receptors 2X3 (P2X3) in spiral ganglion neurons (SGNs), the afferent nerves of medial olivocochlear (MOC) reflex, after long-term moderate noise exposure, and its relationship with the enhancement of MOC reflex. Mice were exposed a moderate broadband noise for 4 weeks consecutively. Then mouse hearing functions, including threshold auditory brainstem responses, distortion-product otoacoustic emissions, and MOC reflex, were evaluated and the expression of P2X2 and P2X3 on SGNs were assessed by cochlear immunofluorescence. AF-353 was injected before each noise exposure. Four weeks later, mice were also tested for hearing functions and expression of P2X2 and P2X3 on SGNs. The long-term moderate noise strengthened MOC reflex, and AF-353 reduced it in mice and P2X3 expression on SGNs increased after long-term moderate noise exposure, and AF-353 can downregulate it. The P2X3 on SGNs of mice increased after long-term moderate noise exposure, and the upregulation of it mediated the enhancement of MOC reflex.


Assuntos
Cóclea , Gânglio Espiral da Cóclea , Camundongos , Animais , Cóclea/fisiologia , Reflexo/fisiologia , Neurônios , Receptores Purinérgicos , Estimulação Acústica
11.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R535-R541, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319898

RESUMO

This study examined the effect of sacral neuromodulation on persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PudNS). In 10 α-chloralose-anesthetized cats, repetitive application of 30-min PudNS induced bladder underactivity evident as an increase in bladder capacity during a cystometrogram (CMG). S1 or S2 dorsal root stimulation (15 or 30 Hz) at 1 or 1.5 times threshold intensity (T) for inducing reflex hindlimb movement (S1) or anal sphincter twitch (S2) was applied during a CMG to determine if the stimulation can reverse the bladder underactivity. Persistent (>3 h) bladder underactivity consisting of a significant increase in bladder capacity to 163.1 ± 11.3% of control was induced after repetitive (1-10 times) application of 30-min PudNS. S2 but not S1 dorsal root stimulation at 15 Hz and 1 T intensity reversed the PudNS-induced bladder underactivity by significantly reducing the large bladder capacity to 124.3 ± 12.9% of control. Other stimulation parameters were not effective. After the induction of persistent underactivity, recordings of reflex bladder activity under isovolumetric conditions revealed that S2 dorsal root stimulation consistently induced the largest bladder contraction at 15 Hz and 1 T when compared with other frequencies (5-40 Hz) or intensities (0.25-1.5 T). This study provides basic science evidence consistent with the hypothesis that abnormal pudendal afferent activity contributes to the bladder underactivity in Fowler's syndrome and that sacral neuromodulation treats this disorder by reversing the bladder inhibition induced by pudendal nerve afferent activity.


Assuntos
Terapia por Estimulação Elétrica , Nervo Pudendo , Animais , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Nervo Pudendo/fisiologia , Reflexo/fisiologia , Bexiga Urinária/inervação
12.
Cereb Cortex ; 32(22): 5121-5131, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35094068

RESUMO

Expectations concerning the timing of a stimulus enhance attention at the time at which the event occurs, which confers significant sensory and behavioral benefits. Herein, we show that temporal expectations modulate even the sensory transduction in the auditory periphery via the descending pathway. We measured the medial olivocochlear reflex (MOCR), a sound-activated efferent feedback that controls outer hair cell motility and optimizes the dynamic range of the sensory system. MOCR was noninvasively assessed using otoacoustic emissions. We found that the MOCR was enhanced by a visual cue presented at a fixed interval before a sound but was unaffected if the interval was changing between trials. The MOCR was also observed to be stronger when the learned timing expectation matched with the timing of the sound but remained unvaried when these two factors did not match. This implies that the MOCR can be voluntarily controlled in a stimulus- and goal-directed manner. Moreover, we found that the MOCR was enhanced by the expectation of a strong but not a weak, sound intensity. This asymmetrical enhancement could facilitate antimasking and noise protective effects without disrupting the detection of faint signals. Therefore, the descending pathway conveys temporal and intensity expectations to modulate auditory processing.


Assuntos
Cóclea , Motivação , Cóclea/fisiologia , Estimulação Acústica , Emissões Otoacústicas Espontâneas/fisiologia , Reflexo/fisiologia
13.
PLoS Biol ; 19(10): e3001439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669696

RESUMO

The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.


Assuntos
Tronco Encefálico/fisiologia , Reflexo/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica , Adolescente , Adulto , Córtex Auditivo/fisiologia , Comportamento , Cóclea/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Biológicos , Neurônios/fisiologia , Ruído , Análise e Desempenho de Tarefas , Adulto Jovem
14.
J Neurophysiol ; 125(6): 2309-2321, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978484

RESUMO

Top-down modulation of sensory responses to distracting stimuli by selective attention has been proposed as an important mechanism by which our brain can maintain relevant information during working memory tasks. Previous works in visual working memory (VWM) have reported modulation of neural responses to distracting sounds at different levels of the central auditory pathways. Whether these modulations occur also at the level of the auditory receptor is unknown. Here, we hypothesize that cochlear responses to irrelevant auditory stimuli can be modulated by the medial olivocochlear system during VWM. Twenty-one subjects (13 males, mean age 25.3 yr) with normal hearing performed a visual change detection task with different VWM load conditions (high load = 4 visual objects; low load = 2 visual objects). Auditory stimuli were presented as distractors and allowed the measurement of distortion product otoacoustic emissions (DPOAEs) and scalp auditory evoked potentials. In addition, the medial olivocochlear reflex strength was evaluated by adding contralateral acoustic stimulation. We found larger contralateral acoustic suppression of DPOAEs during the visual working memory period (n = 21) compared with control experiments (n = 10), in which individuals were passively exposed to the same experimental conditions. These results show that during the visual working memory period there is a modulation of the medial olivocochlear reflex strength, suggesting a possible common mechanism for top-down filtering of auditory responses during cognitive processes.NEW & NOTEWORTHY The auditory efferent system has been proposed to function as a biological filter of cochlear responses during selective attention. Here, we recorded electroencephalographic activity and otoacoustic emissions in response to auditory distractors during a visual working memory task in humans. We found that the olivocochlear efferent activity is modulated during the visual working memory period suggesting a common mechanism for suppressing cochlear responses during selective attention and working memory.


Assuntos
Percepção Auditiva/fisiologia , Cóclea/fisiologia , Núcleo Coclear/fisiologia , Audição/fisiologia , Memória de Curto Prazo/fisiologia , Reflexo/fisiologia , Complexo Olivar Superior/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Vias Eferentes/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
15.
J Neurophysiol ; 125(5): 1938-1953, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625926

RESUMO

Functional outcomes of medial olivocochlear reflex (MOCR) activation, such as improved hearing in background noise and protection from noise damage, involve moderate to high sound levels. Previous noninvasive measurements of MOCR in humans focused primarily on otoacoustic emissions (OAEs) evoked at low sound levels. Interpreting MOCR effects on OAEs at higher levels is complicated by the possibility of the middle-ear muscle reflex and by components of OAEs arising from different locations along the length of the cochlear spiral. We overcame these issues by presenting click stimuli at a very slow rate and by time-frequency windowing the resulting click-evoked (CE)OAEs into short-latency (SL) and long-latency (LL) components. We characterized the effects of MOCR on CEOAE components using multiple measures to more comprehensively assess these effects throughout much of the dynamic range of hearing. These measures included CEOAE amplitude attenuation, equivalent input attenuation, phase, and slope of growth functions. Results show that MOCR effects are smaller on SL components than LL components, consistent with SL components being generated slightly basal of the characteristic frequency region. Amplitude attenuation measures showed the largest effects at the lowest stimulus levels, but slope change and equivalent input attenuation measures did not decrease at higher stimulus levels. These latter measures are less commonly reported and may provide insight into the variability in listening performance and noise susceptibility seen across individuals.NEW & NOTEWORTHY The auditory efferent system, operating at moderate to high sound levels, may improve hearing in background noise and provide protection from noise damage. We used otoacoustic emissions to measure these efferent effects across a wide range of sound levels and identified level-dependent and independent effects. Previous reports have focused on level-dependent measures. The level-independent effects identified here may provide new insights into the functional relevance of auditory efferent activity in humans.


Assuntos
Cóclea/fisiologia , Audição/fisiologia , Reflexo/fisiologia , Complexo Olivar Superior/fisiologia , Estimulação Acústica , Adolescente , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443190

RESUMO

The release of urine, or micturition, serves a fundamental physiological function and, in many species, is critical for social communication. In mice, the pattern of urine release is modulated by external and internal factors and transmitted to the spinal cord via the pontine micturition center (PMC). Here, we exploited a behavioral paradigm in which mice, depending on strain, social experience, and sensory context, either vigorously cover an arena with small urine spots or deposit urine in a few isolated large spots. We refer to these micturition modes as, respectively, high and low territory-covering micturition (TCM) and find that the presence of a urine stimulus robustly induces high TCM in socially isolated mice. Comparison of the brain networks activated by social isolation and by urine stimuli to those upstream of the PMC identified the lateral hypothalamic area as a potential modulator of micturition modes. Indeed, chemogenetic manipulations of the lateral hypothalamus can switch micturition behavior between high and low TCM, overriding the influence of social experience and sensory context. Our results suggest that both inhibitory and excitatory signals arising from a network upstream of the PMC are integrated to determine context- and social-experience-dependent micturition patterns.


Assuntos
Hipotálamo/fisiologia , Isolamento Social/psicologia , Micção/fisiologia , Animais , Encéfalo/fisiologia , Comunicação , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ponte/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Bexiga Urinária/fisiologia , Micção/genética
17.
J Acupunct Meridian Stud ; 14(4): 167-172, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35770559

RESUMO

Background: Electroacupuncture is one of the most popular physical treatments for clinical pain, but the potential influence of a patient's age on the effectiveness of electroacupuncture treatment has not been clearly established. Objectives: The present study aimed to detect a potential difference in electroacupuncture- induced analgesia between juvenile and adult rats. Methods: In this study, we investigated the effects of electroacupuncture treatment on the nociceptive jaw-opening reflex evoked by tooth-pulp stimulation in juvenile and adult rats. Results: Our results showed there were age differences in electroacupuncture-induced analgesic effects in rats, especially with naloxone antagonization. The ratio of naloxonereversibility against electroacupuncture analgesia was greater in adult rats than in juvenile rats. Conclusion: These results suggest that electroacupuncture analgesia is produced mainly by the non-opioid system in juvenile rats and by the opioid system in adult rats.


Assuntos
Eletroacupuntura , Naloxona , Animais , Arcada Osseodentária/fisiologia , Naloxona/farmacologia , Dor , Ratos , Reflexo/fisiologia
18.
Heart Rhythm ; 18(2): 241-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32882399

RESUMO

BACKGROUND: In patients with long QT syndrome (LQTS), swimming and loud noises have been identified as genotype-specific arrhythmic triggers in LQTS type 1 (LQTS1) and LQTS type 2 (LQTS2), respectively. OBJECTIVE: The purpose of this study was to compare LQTS group responses to arrhythmic triggers. METHODS: LQTS1 and LQTS2 patients were included. Before and after beta-blocker intake, electrocardiograms were recorded as participants (1) were exposed to a loud noise of ∼100 dB; and (2) had their face immersed into cold water. RESULTS: Twenty-three patients (9 LQTS1, 14 LQTS2) participated. In response to noise, LQTS groups showed similarly increased heart rate, but LQTS2 patients had corrected QT interval (Fridericia formula) (QTcF) prolonged significantly more than LQTS1 patients (37 ± 8 ms vs 15 ± 6 ms; P = .02). After intake of beta-blocker, QTcF prolongation in LQTS2 patients was significantly blunted and similar to that of LQTS1 patients (P = .90). In response to simulated diving, LQTS groups experienced a heart rate drop of ∼28 bpm, which shortened QTcF similarly in both groups. After intake of beta-blockers, heart rate dropped to 28 ± 2 bpm in LQTS1 patients and 20 ± 3 bpm in LQTS2, resulting in a slower heart rate in LQTS1 compared with LQTS2 (P = .01). In response, QTcF shortened similarly in LQTS1 and LQTS2 patients (57 ± 9 ms vs 36 ± 7 ms; P = .10). CONCLUSION: When exposed to noise, LQTS2 patients had QTc prolonged significantly more than did LQTS1 patients. Importantly, beta-blockers reduced noise-induced QTc prolongation in LQTS2 patients, thus demonstrating the protective effect of beta-blockers. In response to simulated diving, LQTS groups responded similarly, but a slower heart rate was observed in LQTS1 patients during simulated diving after beta-blocker intake.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Eletrocardiografia/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Síndrome do QT Longo/fisiopatologia , Reflexo/fisiologia , Síndrome de Romano-Ward/fisiopatologia , Estimulação Acústica/métodos , Adulto , Reflexo de Mergulho/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Síndrome do QT Longo/tratamento farmacológico , Masculino , Síndrome de Romano-Ward/tratamento farmacológico
19.
J Manipulative Physiol Ther ; 44(1): 25-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248750

RESUMO

OBJECTIVE: The purpose of this study was to compare postural control and neurophysiologic components of balance after dry needling of the fibularis longus between individuals with chronic ankle instability (CAI) and a healthy control group. METHODS: This quasi-experimental university-laboratory study included 50 adult volunteers-25 with CAI (16 female, 9 male; age: 26 ± 9.42 years; height: 173.12 ± 9.85 cm; weight: 79.27 ± 18 kg) and 25 healthy controls (15 female, 10 male; age: 25.8 ± 5.45 years; height: 169.47 ± 9.43 cm; weight: 68.47 ± 13 kg). Participants completed the Star Excursion Balance Test (SEBT), single-leg balance, and assessment of spinal reflex excitability before and after a single treatment of dry needling to the fibularis longus. The anterior, posterolateral, and posteromedial directions of the SEBT were randomized, and reach distances were normalized to a percentage of leg length. A composite SEBT score was calculated by averaging the normalized scores. Postural control was assessed in single-limb stance on a force plate through time-to-boundary measurements in eyes-open and eyes-closed conditions. Fibularis longus and soleus spinal reflexes were obtained by providing electrical stimulation to the common fibular and tibial nerves with participants lying prone. A Group × Time analysis examined changes in performance, and effect sizes were calculated to assess significance. RESULTS: Significant group × time interactions were identified for composite (P = .006) and posteromedial (P = .017) SEBT scores. Significant time effects for all directions of the SEBT, time to boundary with eyes open, and the mediolateral direction with eyes closed indicate improved postural control following treatment (P < .008). Within-group effect sizes for significant time effects ranged from small to large, indicating potential clinical utility. CONCLUSION: Dry needling demonstrated immediate short-term improvement in measures of static and postural control in individuals with CAI as well as healthy controls.


Assuntos
Articulação do Tornozelo/fisiopatologia , Agulhamento Seco/métodos , Instabilidade Articular/terapia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Doença Crônica , Feminino , Humanos , Instabilidade Articular/fisiopatologia , Masculino , Exame Físico , Distribuição Aleatória , Amplitude de Movimento Articular/fisiologia , Reflexo/fisiologia , Adulto Jovem
20.
Sci Rep ; 10(1): 21116, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273638

RESUMO

The hand-blink reflex (HBR) is a subcortical response, elicited by the electrical stimulation of the median nerve, whose magnitude is specifically modulated according to the spatial properties of the defensive peripersonal space (DPPS) of the face. For these reasons, the HBR is commonly used as a model to assess the DPPS of the face. Little is known on the effects induced by the activation of cutaneous afferents from the face on the DPPS of the face. Therefore, we tested the effect of non-painful transcutaneous trigeminal nerve stimulation (TNS) on the amplitude of the HBR. Fifteen healthy participants underwent HBR recording before and after 20 min of sham- and real-TNS delivered bilaterally to the infraorbital nerve in two separate sessions. The HBR was recorded bilaterally from the orbicularis oculi muscles, following non-painful median nerve stimulation at the wrist. The HBR amplitude was assessed in the "hand-far" and "hand-near" conditions, relative to the hand position in respect to the face. The amplitudes of the hand-far and hand-near HBR were measured bilaterally before and after sham- and real-TNS. Real-TNS significantly reduced the magnitude of the HBR, while sham-TNS had no significant effect. The inhibitory effect of TNS was of similar extent on both the hand-far and hand-near components of the HBR, which suggests an action exerted mainly at brainstem level.


Assuntos
Piscadela/fisiologia , Mãos/fisiologia , Reflexo/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Nervo Trigêmeo/fisiologia , Adulto , Área Sob a Curva , Feminino , Humanos , Masculino , Músculos/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA