Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
mSystems ; 9(4): e0136823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493407

RESUMO

Streptomyces bacteria are renowned both for their antibiotic production capabilities and for their cryptic metabolic potential. Their metabolic repertoire is subject to stringent genetic control, with many of the associated biosynthetic gene clusters being repressed by the conserved nucleoid-associated protein Lsr2. In an effort to stimulate new antibiotic production in wild Streptomyces isolates, we leveraged the activity of an Lsr2 knockdown construct and successfully enhanced antibiotic production in the wild Streptomyces isolate WAC07094. We determined that this new activity stemmed from increased levels of the angucycline-like family member saquayamycin. Saquayamycin has both antibiotic and anti-cancer activities, and intriguingly, beyond Lsr2-mediated repression, we found saquayamycin production was also suppressed at high density on solid or in liquid growth media; its levels were greatest in low-density cultures. This density-dependent control was exerted at the level of the cluster-situated regulatory gene sqnR and was mediated in part through the activity of the PhoRP two-component regulatory system, where deleting phoRP led to both constitutive antibiotic production and sqnR expression. This suggests that PhoP functions to repress the expression of sqnR at high cell density. We further discovered that magnesium supplementation could alleviate this density dependence, although its action was independent of PhoP. Finally, we revealed that the nitrogen-responsive regulators GlnR and AfsQ1 could relieve the repression exerted by Lsr2 and PhoP. Intriguingly, we found that this low density-dependent production of saquayamycin was not unique to WAC07094; saquayamycin production by another wild isolate also exhibited low-density activation, suggesting that this spatial control may serve an important ecological function in their native environments.IMPORTANCEStreptomyces specialized metabolic gene clusters are subject to complex regulation, and their products are frequently not observed under standard laboratory growth conditions. For the wild Streptomyces isolate WAC07094, production of the angucycline-family compound saquayamycin is subject to a unique constellation of control factors. Notably, it is produced primarily at low cell density, in contrast to the high cell density production typical of most antibiotics. This unusual density dependence is conserved in other saquayamycin producers and is driven by the pathway-specific regulator SqnR, whose expression is influenced by both nutritional and genetic elements. Collectively, this work provides new insights into an intricate regulatory system governing antibiotic production and indicates there may be benefits to including low-density cultures in antibiotic screening platforms.


Assuntos
Antibacterianos , Streptomyces , Antibacterianos/farmacologia , Streptomyces/genética , Anguciclinas e Anguciclinonas , Magnésio/metabolismo , Regulação Bacteriana da Expressão Gênica , Antraquinonas
2.
Virulence ; 15(1): 2306719, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251714

RESUMO

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos , Arginina , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
3.
Microbiol Spectr ; 11(6): e0226023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787565

RESUMO

IMPORTANCE: Phosphorus (P) is the fifth most abundant element in living cells. This element is acquired mainly as inorganic phosphate (Pi, PO4 3-). In enteric bacteria, P starvation activates a two-component signal transduction system which is composed of the membrane sensor protein PhoR and its cognate transcription regulator PhoB. PhoB, in turn, promotes the transcription of genes that help maintain Pi homeostasis. Here, we characterize the P starvation response of the bacterium Salmonella enterica. We determine the PhoB-dependent and independent transcriptional changes promoted by P starvation and identify proteins enabling the utilization of a range of organic substrates as sole P sources. We show that transcription and activity of a subset of these proteins are independent of PhoB and Pi availability. These results establish that Salmonella enterica can maintain Pi homeostasis and repress PhoB/PhoR activation even when cells are grown in medium lacking Pi.


Assuntos
Proteínas de Escherichia coli , Salmonella enterica , Fósforo/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo , Organofosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética
4.
Appl Environ Microbiol ; 89(10): e0110123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728340

RESUMO

Pseudomonas aeruginosa grows as a biofilm under many environmental conditions, and the bacterium can disperse from biofilms via highly regulated, dynamic processes. However, physiologic triggers of biofilm dispersal remain poorly understood. Based on prior literature describing dispersal triggered by forms of starvation, we tested bacterial respiratory inhibitors for biofilm dispersal in two models resembling chronic airway infections. Our underlying hypothesis was that respiratory inhibitors could serve as a model for the downstream effects of starvation. We used two experimental conditions. In the first condition, biofilms were grown and dispersed from the surface of airway epithelial cells, and the second condition was a model where biofilms were grown on glass in cell culture media supplemented with host-relevant iron sources. In both biofilm models, the respiratory inhibitors potassium cyanide and sodium azide each triggered biofilm dispersal. We hypothesized that cyanide-induced dispersal was due to respiratory inhibition rather than signaling via an alternative mechanism, and, indeed, if respiration was supported by overexpression of cyanide-insensitive oxidase, dispersal was prevented. Dispersal required the activity of the cyclic-di-GMP regulated protease LapG, reinforcing the role of matrix degradation in dispersal. Finally, we examined the roles of individual phosphodiesterases, previously implicated in dispersal to specific triggers, and found signaling to be highly redundant. Combined deletion of the phosphodiesterases dipA, bifA, and rbdA was required to attenuate the dispersal phenotype. In summary, this work adds insight into the physiology of biofilm dispersal under environmental conditions in which bacterial respiration is abruptly limited. IMPORTANCE The bacterium Pseudomonas aeruginosa grows in biofilm communities that are very difficult to treat in human infections. Growing as a biofilm can protect bacteria from antibiotics and the immune system. Bacteria can leave a biofilm through a process called "dispersal." Dispersed bacteria seed new growth areas and are more susceptible to killing by antibiotics. The triggers for biofilm dispersal are not well understood, and if we understood dispersal better it might lead to the development of new treatments for infection. In this paper, we find that inhibiting P. aeurginosa's ability to respire (generate energy) can trigger dispersal from a biofilm grown in association with human respiratory epithelial cells in culture. The dispersal process requires a protease which is previously known to degrade the biofilm matrix. These findings give us a better understanding of how the biofilm dispersal process works so that future research can discover better ways of clearing bacteria growing in biofilms.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Diester Fosfórico Hidrolases/metabolismo , Antibacterianos/farmacologia , Peptídeo Hidrolases/metabolismo , Cianetos/metabolismo , Cianetos/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo
5.
Microbiol Spectr ; 11(3): e0331722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199604

RESUMO

The soil-dwelling bacterium Listeria monocytogenes survives a multitude of conditions when residing in the outside environment and as a pathogen within host cells. Key to survival within the infected mammalian host is the expression of bacterial gene products necessary for nutrient acquisition. Similar to many bacteria, L. monocytogenes uses peptide import to acquire amino acids. Peptide transport systems play an important role in nutrient uptake as well as in additional functions that include bacterial quorum sensing and signal transduction, recycling of peptidoglycan fragments, adherence to eukaryotic cells, and alterations in antibiotic susceptibility. It has been previously described that CtaP, encoded by lmo0135, is a multifunctional protein associated with activities that include cysteine transport, resistance to acid, membrane integrity, and bacterial adherence to host cells. ctaP is located next to two genes predicted to encode membrane-bound permeases lmo0136 and lmo0137, termed CtpP1 and CtpP2, respectively. Here, we show that CtpP1 and CtpP2 are required for bacterial growth in the presence of low concentrations of cysteine and for virulence in mouse infection models. Taken together, the data identify distinct nonoverlapping roles for two related permeases that are important for the growth and survival of L. monocytogenes within host cells. IMPORTANCE Bacterial peptide transport systems are important for nutrient uptake and may additionally function in a variety of other roles, including bacterial communication, signal transduction, and bacterial adherence to eukaryotic cells. Peptide transport systems often consist of a substrate-binding protein associated with a membrane-spanning permease. The environmental bacterial pathogen Listeria monocytogenes uses the substrate-binding protein CtaP not only for cysteine transport but also for resistance to acid, maintenance of membrane integrity, and bacterial adherence to host cells. In this study, we demonstrate complementary yet distinct functional roles for two membrane permeases, CtpP1 and CtpP2, that are encoded by genes linked to ctaP and that contribute to bacterial growth, invasion, and pathogenicity.


Assuntos
Listeria monocytogenes , Animais , Camundongos , Listeria monocytogenes/genética , Cisteína/metabolismo , Virulência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Mamíferos
6.
Microbiol Spectr ; 11(3): e0445722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37014254

RESUMO

Burkholderia gladioli strain NGJ1 exhibits mycophagous activity on a broad range of fungi, including Rhizoctonia solani, a devastating plant pathogen. Here, we demonstrate that the nicotinic acid (NA) catabolic pathway in NGJ1 is required for mycophagy. NGJ1 is auxotrophic to NA and it potentially senses R. solani as a NA source. Mutation in the nicC and nicX genes involved in NA catabolism renders defects in mycophagy and the mutant bacteria are unable to utilize R. solani extract as the sole nutrient source. As supplementation of NA, but not FA (fumaric acid, the end product of NA catabolism) restores the mycophagous ability of ΔnicC/ΔnicX mutants, we anticipate that NA is not required as a carbon source for the bacterium during mycophagy. Notably, nicR, a MarR-type of transcriptional regulator that functions as a negative regulator of the NA catabolic pathway is upregulated in ΔnicC/ΔnicX mutant and upon NA supplementation the nicR expression is reduced to the basal level in both the mutants. The ΔnicR mutant produces excessive biofilm and is completely defective in swimming motility. On the other hand, ΔnicC/ΔnicX mutants are compromised in swimming motility as well as biofilm formation, potentially due to the upregulation of nicR. Our data suggest that a defect in NA catabolism alters the NA pool in the bacterium and upregulates nicR which in turn suppresses bacterial motility as well as biofilm formation, leading to mycophagy defects. IMPORTANCE Mycophagy is an important trait through which certain bacteria forage over fungal mycelia and utilize fungal biomass as a nutrient source to thrive in hostile environments. The present study emphasizes that nicotinic acid (NA) is important for bacterial motility and biofilm formation during mycophagy by Burkholderia gladioli strain NGJ1. Defects in NA catabolism potentially alter the cellular NA pool, upregulate the expression of nicR, a negative regulator of biofilm, and therefore suppress bacterial motility as well as biofilm formation, leading to mycophagy defects.


Assuntos
Burkholderia gladioli , Niacina , Burkholderia gladioli/metabolismo , Niacina/metabolismo , Bactérias/metabolismo , Biofilmes , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
mBio ; 14(3): e0253522, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067422

RESUMO

Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of, genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert and hence are tolerated as genomic "noise." IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of nonregulatory, intragenic binding sites for transcription factors and that these binding sites are not under selective pressure.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Regulon , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Fosfatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Microb Biotechnol ; 16(5): 1041-1053, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905370

RESUMO

Corynebacterium glutamicum experiences a transient iron limitation during growth in minimal medium, which can be compensated by the external supplementation of protocatechuic acid (PCA). Although C. glutamicum is genetically equipped to form PCA from the intermediate 3-dehydroshikimate catalysed by 3-dehydroshikimate dehydratase (encoded by qsuB), PCA synthesis is not part of the native iron-responsive regulon. To obtain a strain with improved iron availability even in the absence of the expensive supplement PCA, we re-wired the transcriptional regulation of the qsuB gene and modified PCA biosynthesis and degradation. Therefore, we ushered qsuB expression into the iron-responsive DtxR regulon by replacing the native promoter of the qsuB gene by the promoter PripA and introduced a second copy of the PripA -qsuB cassette into the genome of C. glutamicum. Reduction of the degradation was achieved by mitigating expression of the pcaG and pcaH genes through a start codon exchange. The final strain C. glutamicum IRON+ showed in the absence of PCA a significantly increased intracellular Fe2+ availability, exhibited improved growth properties on glucose and acetate, retained a wild type-like biomass yield but did not accumulate PCA in the supernatant. For the cultivation in minimal medium C. glutamicum IRON+ represents a useful platform strain that reveals beneficial growth properties on different carbon sources without affecting the biomass yield and overcomes the need of PCA supplementation.


Assuntos
Corynebacterium glutamicum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
Infect Immun ; 91(4): e0049622, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36912636

RESUMO

Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Transporte Biológico , Enterococcus faecalis , Ferro , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Virulência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos
10.
Infect Immun ; 91(2): e0042022, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36633416

RESUMO

Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Proteínas Repressoras , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Mutação , Cloreto de Sódio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
J Inorg Biochem ; 240: 112122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639322

RESUMO

Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.


Assuntos
Cobre , Streptococcus pyogenes , Camundongos , Animais , Cobre/metabolismo , Virulência , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Homeostase , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
12.
Phytopathology ; 113(3): 390-399, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399025

RESUMO

Nitrate metabolism plays an important role in bacterial physiology. During the interaction of plant-pathogenic bacteria with their hosts, bacteria face variable conditions with respect to nitrate availability. Perception mechanisms through the chemosensory pathway drive the entry and control the colonization of the plant host in phytopathogenic bacteria. In this work, the identification and characterization of the nitrate- and nitrite-sensing (NIT) domain-containing chemoreceptor of Dickeya dadantii 3937 (Dd3937) allowed us to unveil the key role of nitrate sensing not only for the entry into the plant apoplast through wounds but also for infection success. We determined the specificity of this chemoreceptor to bind nitrate and nitrite, with a slight ligand preference for nitrate. Gene expression analysis showed that nitrate perception controls not only the expression of nitrate reductase genes involved in respiratory and assimilatory metabolic processes but also the expression of gyrA, hrpN, and bgxA, three well-known virulence determinants in Dd3937.


Assuntos
Nitratos , Solanum tuberosum , Virulência/genética , Nitratos/metabolismo , Solanum tuberosum/microbiologia , Nitritos/metabolismo , Doenças das Plantas/microbiologia , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Plantas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
13.
Microbiol Spectr ; 10(6): e0294922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377917

RESUMO

The increasingly serious problem of bacterial drug resistance has led to the development of antivirulence agents. The Salmonella enterica serovar Typhimurium Salmonella pathogenicity island (SPI)-encoded type III secretion system (T3SS) and its effector proteins are important virulence factors for S. Typhimurium invasion and replication in host cells and for antivirulence drug screening. Fraxetin is isolated from Fraxinus spp. Extensive studies have reported its multiple pharmacological activities. However, it remains to be elucidated whether fraxetin affects the function of the S. Typhimurium T3SS. In this study, the anti-infection mechanism of fraxetin on S. Typhimurium and its T3SS was investigated. Fraxetin inhibited the S. Typhimurium invasion of HeLa cells without affecting the growth of bacteria in vitro. Further findings on the mechanism showed that fraxetin had an inhibitory effect on the S. Typhimurium T3SS by inhibiting the transcription of the pathogenesis-related SPI-1 transcriptional activator genes hilD, hilC, and rtsA. Animal experiments showed that fraxetin treatment protected mice against S. Typhimurium infection. Collectively, we provide the first demonstration that fraxetin may serve as an effective T3SS inhibitor for the development of treatments for Salmonella infection. IMPORTANCE The increasingly serious problem of bacterial antibiotic resistance limits the clinical application of antibiotics, which increases the need for the development of antivirulence agents. The type III secretion system (T3SS) plays a critical role in host cell invasion and pathogenesis of Salmonella and becomes a popular target for antivirulence agents screening. Our study found, for the first time, that fraxetin inhibited S. Typhimurium invasion by inhibiting the transcription of genes in a feed-forward regulatory loop. Further in vivo testing showed that fraxetin decreased bacterial burdens in the spleen and liver of S. Typhimurium-infected mice and improved survival outcomes in an in vivo mouse model of S. Typhimurium infection. Collectively, these results demonstrate that fraxetin inhibits S. Typhimurium infection by targeting the T3SS and may serve as a potential agent for the treatment of S. Typhimurium infection.


Assuntos
Salmonella typhimurium , Sistemas de Secreção Tipo III , Humanos , Animais , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Células HeLa , Sorogrupo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
14.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361923

RESUMO

Acinetobacter baumannii expresses various virulence factors to adapt to hostile environments and infect susceptible hosts. This study investigated the regulatory network of the BfmRS two-component and AbaIR quorum sensing (QS) systems in the expression of virulence-associated genes in A. baumannii ATCC 17978. The ΔbfmS mutant exhibited a significant decrease in surface motility, which presumably resulted from the low expression of pilT and A1S_0112-A1S_0119 gene cluster. The ΔbfmR mutant displayed a significant reduction in biofilm and pellicle formation due to the low expression of csu operon. The deletion of abaR did not affect the expression of bfmR or bfmS. However, the expression of abaR and abaI was upregulated in the ΔbfmR mutant. The ΔbfmR mutant also produced more autoinducers than did the wild-type strain, suggesting that BfmR negatively regulates the AbaIR QS system. The ΔbfmS mutant exhibited no autoinducer production in the bioassay system. The expression of the A1S_0112-A1S_0119 gene cluster was downregulated in the ΔabaR mutant, whereas the expression of csu operon was upregulated in this mutant with a high cell density. In conclusion, for the first time, we demonstrated that the BfmRS-AbaIR QS system axis regulated the expression of virulence-associated genes in A. baumannii. This study provides new insights into the complex network system involved in the regulation of virulence-associated genes underlying the pathogenicity of A. baumannii.


Assuntos
Acinetobacter baumannii , Virulência/genética , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
15.
Microbiol Spectr ; 10(5): e0235422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36106752

RESUMO

We recently described a new member of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family called RedB, an acronym for redox brake, that functions to limit the production of ATP and NADH. This study shows that the RedB regulon significantly overlaps the FnrL regulon, with 199 genes being either directly or indirectly regulated by both of these global regulatory proteins. Among these 199 coregulated genes, 192 are divergently regulated, indicating that RedB functions as an antagonist of FnrL. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicates that RedB and Fnr directly coregulate only 4 out of 199 genes. The primary mechanism for the divergent regulation of target genes thus involves indirect regulation by both RedB and FnrL (156 cases). Additional regulation involves direct binding by RedB and indirect regulation by FnrL (36 cases) or direct binding by FnrL and indirect regulation by RedB (3 cases). Analysis of physiological pathways under direct and indirect control by these global regulators demonstrates that RedB functions primarily to limit energy production, while FnrL functions to enhance energy production. This regulation includes glycolysis, gluconeogenesis, photosynthesis, hydrogen oxidation, electron transport, carbon fixation, lipid biosynthesis, and protein synthesis. Finally, we show that 75% of genomes from diverse species that code for RedB proteins also harbor genes coding for FNR homologs. This cooccurrence indicates that RedB likely has an important role in buffering FNR-mediated energy production in a broad range of species. IMPORTANCE The CRP/FNR family of regulatory proteins constitutes a large collection of related transcription factors, several of which globally regulate cellular energy production. A well-characterized example is FNR (called FnrL in Rhodobacter capsulatus), which is responsible for regulating the expression of numerous genes that promote maximal energy production and growth under anaerobic conditions. In a companion article (N. Ke, J. E. Kumka, M. Fang, B. Weaver, et al., Microbiol Spectr 10:e02353-22, 2022, https://doi.org/10.1128/Spectrum02353-22), we identified a new subgroup of the CRP/FNR family and demonstrated that a member of this new subgroup, called RedB, has a role in limiting cellular energy production. In this study, we show that numerous genes encompassing the RedB regulon significantly overlap genes that are members of the FnrL regulon. Furthermore, 97% of the genes that are members of both the RedB and FnrL regulons are divergently regulated by these two transcription factors. RedB thus functions as a buffer limiting the amount of energy production that is promoted by FnrL.


Assuntos
Rhodobacter capsulatus , Rhodobacter sphaeroides , Trifosfato de Adenosina/metabolismo , Anaerobiose , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Fumaratos/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrogênio/metabolismo , Lipídeos , NAD/genética , NAD/metabolismo , Oxirredução , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
NPJ Biofilms Microbiomes ; 8(1): 65, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987769

RESUMO

In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Vibrio cholerae , Animais , Citarabina , Drosophila melanogaster/metabolismo , Frutose , Regulação Bacteriana da Expressão Gênica , Humanos , Manose/metabolismo , Fosfatos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
17.
Biosci Biotechnol Biochem ; 86(10): 1383-1397, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35881471

RESUMO

The Bacillus subtilis rhiLFGN-rhgR-yesTUVWXYZ (formerly yesOPQRSTUVWXYZ) gene cluster includes genes for metabolizing rhamnogalacturonan type I (RG-I), a major pectin constituent, and the rhgR gene encoding an AraC/XylS transcriptional activator. The yesL-rhgKL (formerly yesLMN) operon, adjacent to the rhiL gene, includes the rhgKL genes encoding a two-component regulatory system. The reporter analyses showed that 3 promoters immediately upstream of the rhiL, yesW, and yesL genes were induced by RG-I and repressed by glucose in the medium. The reporter analyses also showed that RhgL and RhgR contribute to the RG-I-dependent induction of the rhiL promoter and that CcpA mediates the catabolite repression of the rhiL and yesL promoters. The in vitro experiments demonstrated that the RhgL response regulator and the CcpA complex bind to each site in the rhiL promoter region. The RT-PCR analysis and the different properties of the rhiL and yesW promoters suggested the rhiLFGN-rhgR-yesTUV genes as an operon.


Assuntos
Bacillus subtilis , Ramnogalacturonanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Óperon/genética , Proteínas Repressoras/genética
18.
Antimicrob Agents Chemother ; 66(7): e0018722, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736133

RESUMO

Staphylococcus aureus is a common cause of severe infections, and its widespread antibiotic resistance necessitates search for alternative therapies, such as inhibition of virulence. As S. aureus produces multiple individual virulence factors, inhibition of an entire regulatory system might provide better effects than targeting each virulence factor separately. Herein, we describe two novel inhibitors of S. aureus two-component regulatory system ArlRS: 3,4'-dimethoxyflavone and homopterocarpin. Unlike other putative ArlRS inhibitors previously identified, these two compounds were effective and specific. In vitro kinase assays indicated that 3,4'-dimethoxyflavone directly inhibits ArlS autophosphorylation, while homopterocarpin did not exhibit such effect, suggesting that two inhibitors work through distinct mechanisms. Application of the inhibitors to methicillin-resistant S. aureus (MRSA) in vitro blocked ArlRS signaling, inducing an abnormal gene expression pattern that was reflected in changes at the protein level, enhanced sensitivity to oxacillin, and led to the loss of numerous cellular virulence traits, including the ability to clump, adhere to host ligands, and evade innate immunity. The pleiotropic antivirulence effect of inhibiting a single regulatory system resulted in a marked therapeutic potential, demonstrated by the ability of inhibitors to decrease severity of MRSA infection in mice. Altogether, this study demonstrated the feasibility of ArlRS inhibition as anti-S. aureus treatment, and identified new lead compounds for therapeutic development.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Proteínas Quinases/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Microbiol Mol Biol Rev ; 86(3): e0002922, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35726719

RESUMO

Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of fabT expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.


Assuntos
Proteína de Transporte de Acila , Proteínas de Bactérias , Ácidos Graxos , Fatores de Transcrição , Proteína de Transporte de Acila/metabolismo , Animais , Bactérias/genética , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Correpressoras/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Regulação Bacteriana da Expressão Gênica , Camundongos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
20.
PLoS One ; 17(3): e0265511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358211

RESUMO

In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.


Assuntos
Salmonella typhimurium , Fator sigma , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Íons/metabolismo , Ferro/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Sorogrupo , Fator sigma/genética , Fator sigma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA