Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 6(5): e0071021, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643421

RESUMO

The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid ß-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCE Candida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward ß-oxidation. These results provide definitive explanations for the observed antifungal effects.


Assuntos
Candida auris/efeitos dos fármacos , Candida auris/genética , Candida auris/fisiologia , Farneseno Álcool/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Percepção de Quorum , Ativação Transcricional/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
2.
PLoS One ; 16(10): e0258108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614005

RESUMO

Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC50 = 12.5µg/ml), C. tropicalis var. tropicalis (IC50 = 25µg/ml), C. parapsilosis var. parapsilosis (IC50 = 6.25µg/ml), C. glabrata (IC50 = 6.25µg/ml), C. tropicalis (IC50 = 12.5µg/ml), and C. parapsilosis (IC50 = 12.5µg/ml) without directly reducing Candida growth. Treatment with 6.25µg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125µg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Hedera/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Candida/genética , Candida/patogenicidade , Candidíase/genética , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hifas/química , Testes de Sensibilidade Microbiana
3.
Biotechnol Bioeng ; 118(4): 1597-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421102

RESUMO

Bionanotechnology has increasingly gained attention in biomedical fields as antifungal and antibiofilm agents. In this study, biosynthesized silver nanoparticles (bio-AgNPs) using aqueous Eucalyptus camaldulensis leaf extract were successfully performed by a one-step green approach. Spherical-shaped nanoparticles, approximately 8.65 nm, exhibited noncytotoxicity to erythrocytes, HeLa, and HaCaT cells. The synthesized nanoparticles showed strong fungicidal activity ranging from 0.5 to 1 µg/ml. The nanoparticles affected Candida adhesion and invasion into host cells by reduced germ tube formation and hydrolytic enzyme secretion. Inhibitory effects of bio-AgNPs on Candida biofilms were evaluated by the prevention of yeast-to-hyphal transition. A decrease in cell viability within mature biofilm demonstrated the ability of bio-AgNPs to penetrate into the extracellular matrix and destroy yeast cell morphology, leading to cell death. Molecular biology study on biofilms confirmed downregulation in the expression of genes ALS3, HWP1, ECE1, EFG1, TEC1, ZAP1, encoding hyphal growth and biofilm development and PLB2, LIP9, SAP4, involved in hydrolytic enzymes. In addition to candida treatment, the bio-AgNPs could be applied as an antioxidant to protect against oxidative stress-related human diseases. The findings concluded that bio-AgNPs could be used as an antifungal agent for candida treatment, as well as be incorporated in medical devices to prevent biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Eucalyptus/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata , Biofilmes/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Prata/química , Prata/farmacologia
4.
PLoS One ; 15(11): e0242616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232355

RESUMO

Coenzyme Q (CoQ, ubiquinone) is an essential component of the electron transport system in aerobic organisms. Human type CoQ10, which has 10 units of isoprene in its quinone structure, is especially valuable as a food supplement. Therefore, studying the biosynthesis of CoQ10 is important not only for increasing metabolic knowledge, but also for improving biotechnological production. Herein, we show that Schizosaccharomyces pombe utilizes p-aminobenzoate (PABA) in addition to p-hydroxybenzoate (PHB) as a precursor for CoQ10 synthesis. We explored compounds that affect the synthesis of CoQ10 and found benzoic acid (Bz) at >5 µg/mL inhibited CoQ biosynthesis without accumulation of apparent CoQ intermediates. This inhibition was counteracted by incubation with a 10-fold lower amount of PABA or PHB. Overexpression of PHB-polyprenyl transferase encoded by ppt1 (coq2) also overcame the inhibition of CoQ biosynthesis by Bz. Inhibition by Bz was efficient in S. pombe and Schizosaccharomyces japonicus, but less so in Saccharomyces cerevisiae, Aureobasidium pullulans, and Escherichia coli. Bz also inhibited a S. pombe ppt1 (coq2) deletion strain expressing human COQ2, and this strain also utilized PABA as a precursor of CoQ10. Thus, Bz is likely to inhibit prenylation reactions involving PHB or PABA catalyzed by Coq2.


Assuntos
Ácido Benzoico/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/biossíntese , Schizosaccharomyces/metabolismo , Ubiquinona/biossíntese , Proibitinas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquinona/genética
5.
Arch Microbiol ; 202(9): 2533-2542, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656677

RESUMO

The aim of this study was to evaluate the phytochemical constituents, antioxidant, antifungal, and anti-virulence activities of traditionally used Mezoneuron benthamianum leaves. Extracts were prepared using acetone and methanol, and the preliminary phytochemical screening was performed. The antioxidant activity was studied using the DPPH method. Anti-Candida albicans activity was established and the effect on the germ tube and phospholipase production, as well as on the host cell adherence was assessed. The extracts showed the presence of anthraquinones, cardiac glycosides, flavonoids, reducing sugars, saponins, steroids, tannins, and terpenoids. Gallic acid and trans-resveratrol were among the predominant phytochemicals found in M. benthamianum. The crude extracts presented significantly higher antioxidant activity than the ascorbic acid standard. At 0.39 mg/mL, acetone extract inhibited the growth of Candida albicans. At lower concentrations (200-50 µg/mL), it significantly inhibited the adherence ability (up to 51%), formation of hyphae (up to 65%), and the production of phospholipase. In conclusion, at high concentrations, M. benthamianum kills C. albicans, and at lower concentrations, it can inhibit the virulence properties of this pathogen. This study on crude extract validates the traditional use of this plant. However, further research is required to establish the anti-virulence activity of the two compounds and their therapeutic potential.


Assuntos
Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Fabaceae/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antifúngicos/farmacologia , Antioxidantes/análise , Fosfolipases/genética , Fosfolipases/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Taninos
6.
Yeast ; 37(7-8): 389-396, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32726865

RESUMO

Tetracycline (Tet) and derivative chemicals (e.g., doxycycline or Dox) have gained widespread recognition for their antibiotic properties since their introduction in the late 1970s, but recent work with these chemicals in the lab has shifted to include multiple techniques in all genetic model systems for the precise control of gene expression. The most widely used Tet-modulated methodology is the Tet-On/Tet-Off gene expression system. Tet is generally considered to have effects specific to bacteria; therefore, it should have few off-target effects when used in eukaryotic systems, and a previous study in the yeast Saccharomyces cerevisiae found that Dox had no effect on genome-wide gene expression as measured by microarray. In contrast, another study found that the use of Dox in common cell lines and several model organisms led to mitonuclear protein imbalance, suggesting an inhibitory role of Dox in eukaryotic mitochondria. Recently, a new Dox derivative, 4-epidoxycycline (4-ED) was developed that was shown to have less off-target consequences on mitochondrial health. To determine the best tetracycline family chemical to use for gene expression control in S. cerevisiae, we performed RNA sequencing (RNA-seq) on yeast grown on standard medium compared with growth on media supplemented with Tet, Dox or 4-ED. We found each caused dozens of genes to change expression, with Dox eliciting the greatest expression responses, suggesting that the specific tetracycline used in experiments should be tailored to the specific gene(s) of interest when using the Tet-On/Tet-Off system to reduce the consequences of confounding off-target responses.


Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Tetraciclina/farmacologia , Ciclo Celular , Replicação do DNA , Genoma Fúngico , RNA Fúngico , Análise de Sequência de RNA
7.
Sci Rep ; 10(1): 6676, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317674

RESUMO

Grape-derived proanthocyanidins could act as a protector against various environmental stresses for Saccharomyces cerevisiae during wine fermentation, resulting in the increased physiological activity, fermentation efficiency and improved wine quality. In order to explore the possible protection mechanism of proanthocyanidins globally, RNA-seq analysis for wine yeast AWRI R2 cultivated with 0 g/L (group A), 0.1 g/L (group B), 1.0 g/L (group C) proanthocyanidins were applied in this study. Differentially expressed genes were enriched into six metabolic pathways including vitamin B6, thiamine, amino acids, aminoacyl-tRNA, carbohydrate and steroid based on KEGG enrichment analysis. Four key genes (SNZ2, THI6, THI21 and THI80), participated in the biosynthesis of vitamin B6 and thiamine, were up-regulated significantly in proanthocyanidins treated yeast cells and the gene expression levels were verified by RT-qPCR. Yeast cells supplemented with proanthocyanidins performed increased intracellular levels of vitamin B6 and thiamine and higher cell viability compared to the control group. In addition, the composition of intracellular fatty acids showed an obvious alternation in proanthocyanidins-treated yeast cells, in which the UFAs content increased whereas the SFA content decreased. In general, we provided an indirect protection effect of proanthocyanidins on the yeast cells to alleviate environmental stresses during wine fermentation.


Assuntos
Fermentação/efeitos dos fármacos , Perfilação da Expressão Gênica , Proantocianidinas/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Vinho/microbiologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ácidos Graxos/metabolismo , Fermentação/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Viabilidade Microbiana/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Tiamina/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vitamina B 6/metabolismo
8.
Environ Microbiol ; 22(7): 2792-2810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250030

RESUMO

Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Catalase/metabolismo , Virulência/genética , Antioxidantes/metabolismo , Aspergillus flavus/genética , Catalase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Virulência/efeitos dos fármacos
9.
Sci Rep ; 10(1): 3615, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107396

RESUMO

Vulvovaginal candidiasis causes sufferers much discomfort. Phytotherapy with garlic has been reported to be a possible alternative form of treatment; however, it is unknown why patients report varying success with this strategy. Fresh garlic extract has been shown to down-regulate the putative virulence gene, SIR2 in C. albicans. Our study aimed to see if previous observations were reproducible for the gene responsible for Candidalysin (ECE1). Two clinical strains from patients with reported variable efficacy of using garlic for the treatment of vulvovaginal candidiasis were compared through biofilm assays and antimicrobial susceptibility. Real-time PCR was used to assess changes in gene expression when exposed to garlic. Treatment with fresh garlic extract and pure allicin (an active compound produced in cut garlic) resulted in a decrease in SIR2 expression in all strains. In contrast, ECE1 expression was up-regulated in a reference strain and an isolate from a patient unresponsive to garlic therapy, while in an isolate from a patient responsive to garlic therapy, down-regulation of ECE1 occurred. Future studies that investigate the effectiveness of phytotherapies should take into account possible varying responses of individual strains and that gene expression may be amplified in the presence of serum.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alho/química , Extratos Vegetais/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Dissulfetos , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Sulfínicos/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Sci Rep ; 10(1): 2936, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076074

RESUMO

To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1-159) and C-terminus (amino acids 160-237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.


Assuntos
Bioensaio/métodos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Mapeamento de Interação de Proteínas , Tetraciclina/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Doxiciclina/farmacologia , Fluorescência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Higromicina B/farmacologia , Proteínas Luminescentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Septinas/metabolismo
11.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085660

RESUMO

Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.


Assuntos
Vias Biossintéticas , Reparo do DNA , Proteínas Fúngicas/metabolismo , Pirimidinas/biossíntese , Verticillium/metabolismo , Verticillium/patogenicidade , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Reparo do DNA/efeitos dos fármacos , Fluorescência , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Tiamina/farmacologia , Nicotiana/microbiologia , Raios Ultravioleta , Verticillium/efeitos dos fármacos , Verticillium/crescimento & desenvolvimento , Virulência/efeitos dos fármacos , Virulência/genética , Virulência/efeitos da radiação
12.
J Mycol Med ; 30(1): 100915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008963

RESUMO

Aspergillus infections are increasingly recognized as a global health problem because of limited antifungal drugs and occurrence of azole resistance worldwide. More cyp51-mediated and non-cyp51-mediated mechanisms of azole resistance have been identified in clinical and laboratory studies in recent years with applications of molecular biotechnology including next-generation sequencing, reverse genetics and so on. In this review, current research on the molecular mechanisms of azole resistance in A. fumigatus were presented and summarized and meanwhile the putative clinical relevance of these findings from bench work were discussed. Important aims are to gain more insight to mechanism of azole resistance and provide some efficient lead for prevention strategy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/genética , Azóis/uso terapêutico , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Aspergilose/genética , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mutação , Esterol 14-Desmetilase/genética
13.
Toxins (Basel) ; 12(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019224

RESUMO

Asparagus is a genus consisting of over two hundred species of perennial plants. Fusariumproliferatum is a major asparagus pathogen and it biosynthesizes a variety of mycotoxins, of which fumonisins B are prevalent. Our previous studies on F.proliferatum strains indicated that asparagus extract affects the expression of FUM1 gene, encoding polyketide synthase, a key enzyme of the FUM gene cluster governing the biosynthesis of fumonisins. An asparagus-derived F.proliferatum strain increased fumonisin B1 production after extract fractions' addition, reaching the maximum 2 or 24 h after treatment. The cultures yielded between 40 and 520 mg of dry weight of mycelia after 14 days of cultivation. The differences in fungal biomass amounts between the whole extract and its fractions may result from synergistic effect of all bioactive compounds present in asparagus extract. Among extract fractions, the methanolic fraction had the highest effect on the dry weight of the mycelium reaching about a 13-fold increase compared to the control. Furthermore, we measured the relative expression of the FUM1 gene. Due to the possible antifungal activity of tested extract fractions, future research will be focused on the identification of the Asparagus officinalis L. compounds responsible for this activity.


Assuntos
Asparagus , Fumonisinas/metabolismo , Fusarium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Biomassa , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
14.
Sci Rep ; 10(1): 1972, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029802

RESUMO

Candida tropicalis arises as one of the predominant non-Candida albicans Candida (NCAC) species causing invasive candidiasis in Asian countries. A rise in reports of C. tropicalis with a parallel increase in fluconazole resistance has also been observed. The genes and underlying pathways associated with azole antifungal resistance in C. tropicalis is still not properly understood. The RT-qPCR is the most promising approach for expression analysis of target genes to understand the mechanisms of resistance. The reliability and reproducibility of this technique depend on the selection of suitable reference genes for the normalization in expression study. The present study investigated the expression stability levels of ten genes including ACT1, EF1, GAPDH, PGK1, RDN5.8, RDN18, RDN28, SDHA, TUB1, and UBC13 for their suitability in fluconazole treated/untreated C. tropicalis. The stability levels of these genes were examined by the ∆∆CT, ΔCT, Pfaffl methods and five independent software including hkgFinder, geNorm, NormFinder, BestKeeper, and RefFinder software. We report, the EF1 and ACT1 were the most stable reference genes for normalization and can be used for the gene expression analysis in C. tropicalis. To the best of our knowledge, our study is the first to select and validate the reference genes in C. tropicalis for RT-qPCR based expression analysis.


Assuntos
Candida tropicalis/efeitos dos fármacos , Candidíase Invasiva/tratamento farmacológico , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Actinas/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida tropicalis/genética , Candidíase Invasiva/microbiologia , Estudos de Viabilidade , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Proteínas Fúngicas/genética , Genes Essenciais , Humanos , Índia , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes
15.
Mol Biol Rep ; 47(1): 33-43, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612412

RESUMO

Aging is a degenerative process characterized by progressive deterioration of cellular components, ultimately resulting in mortality, in which massive accumulation of reactive oxygen species (ROS) and advanced glycation end products (AGEs) are implicated as crucial factors. At the same time, natural products are rich sources from which to isolate and characterize potential anti-aging compounds. The current study was designed to extract compounds from the marine bacterium Pseudomonas sp. and investigate their in vitro antioxidant and anti-glycation activities, as well as their in vivo effects on aging in the model organism Schizosaccharomyces pombe. In vitro assays showed that a Pseudomonas sp. PTR-08 extract exhibited the best antioxidant and anti-glycation activities. Further, direct administration of the extract significantly increased yeast longevity, accompanied by induction of the yeast oxidative stress response. Molecular analyses indicated that selected extract dramatically up-regulated the expression of pap1+, which encodes the transcriptional factor Pap1 and ctt1+, which encodes catalase, following H2O2 treatment. In line with these results, catalase activity significantly increased, leading to a decrease in intracellular ROS. In addition, this extract may delay the G1 phase of the yeast cell cycle, leading to an extended lifespan. Moreover, our findings indicated that the extract contains pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-, which substantially promotes anti-aging activity in yeast. However, further research must be conducted to better understand the role of this compound in our system.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Pseudomonas/química , Schizosaccharomyces/efeitos dos fármacos , Organismos Aquáticos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Catalase/genética , Catalase/metabolismo , Ciclo Celular/genética , Avaliação Pré-Clínica de Medicamentos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Longevidade/genética , Organismos Geneticamente Modificados , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
J Environ Sci Health B ; 55(3): 210-219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31653182

RESUMO

In the present study, ethanolic extract from Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus growth and aflatoxins production were studied in relation to the expression of aflD and aflR, two key genes of aflatoxins biosynthetic pathway. Phytochemical analysis of the ethanolic extract by GC-EIMS identified affinin/spilanthol (7.84 ± 0.27 mg g-1) as the most abundant compounds in H. longipes roots. The antifungal and anti-aflatoxigenic assays showed that affinin/spilanthol at 300 µg mL-1 produced the higher inhibition of radial growth (95%), as well as, the higher aflatoxins production inhibition (61%) in comparison to H. longipes roots (87% and 48%, respectively). qRT-PCR revealed that the expression of aflD and aflR genes showed a higher downregulation in affinin/spilanthol at 300 µg mL-1. The expression ratio of alfD was suppressed by affinin/spilanthol in 79% and aflR in 84%, while, a lower expression ratio suppressed by H. longipes was obtained, alfD (55%) and aflR (59%). Affinin/spilanthol possesses higher antifungal and anti-aflatoxigenic activity against A. parasiticus rather than H. longipes roots, and this anti-aflaxotigenic activity occurring via downregulation of the aflD and aflR genes. Thus, H. longipes roots and affinin/spilanthol can be considered potent antifungal agents against aflatoxigenic fungus, especially, affinin/spilanthol.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Asteraceae/química , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Aflatoxinas/biossíntese , Aflatoxinas/genética , Antifúngicos/química , Aspergillus/genética , Aspergillus/metabolismo , Vias Biossintéticas , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/química , Alcamidas Poli-Insaturadas/análise , Fatores de Transcrição/genética
17.
Chin J Nat Med ; 17(8): 616-623, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472899

RESUMO

Loureirin A is a major active component of Draconis sanguis, a traditional Chinese medicine. This work aimed to investigate the activity of loureirin A against Candida albicans biofilms. 2, 3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)reduction assay and scanning electron microscopy were used to investigate the anti-biofilm effect. Minimal inhibitory concentration testing and time-kill curve assay were used to evaluate fungicidal activity. Cell surface hydrophobicity (CSH) assay and hyphal formation experiment were respectively carried out to investigate adhesion and morphological transition, two virulence traits of C. albicans. Real-time RT-PCR was used to investigate gene expression. Galleria mellonella-C. albicans and Caenorhabditis elegans-C. albicans infection models were used to evaluate the in-vivo antifungal effect. Human umbilical vein endothelial cells and C. elegans nematodes were used to evaluate the toxicity ofloureirin A. Our data indicated that loureirin A had a significant effect on inhibiting C. albicans biofilms, decreasing CSH, and suppressing hyphal formation. Consistently, loureirin A down-regulated the expression of some adhesion-related genes and hypha/biofilm-related genes. Moreover, loureirin A prolonged the survival of Galleria mellonella and Caenorhabditis elegans in C. albicans infection models and exhibited low toxicity. Collectively, loureirin A inhibits fungal biofilms, and this effect may be associated with the suppression of pathogenic traits, adhesion and hyphal formation.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Chalconas/farmacologia , Animais , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans , Candida albicans/genética , Candidíase/microbiologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Medicina Tradicional Chinesa , Testes de Sensibilidade Microbiana , Mariposas
18.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416893

RESUMO

Nutritional limitation has been vastly studied; however, there is limited knowledge of how cells maintain homeostasis in excess nutrients. In this study, using yeast as a model system, we show that some amino acids are toxic at higher concentrations. With cysteine as a physiologically relevant example, we delineated the pathways/processes that are altered and those that are involved in survival in the presence of elevated levels of this amino acid. Using proteomics and metabolomics approach, we found that cysteine up-regulates proteins involved in amino acid metabolism, alters amino acid levels, and inhibits protein translation-events that are rescued by leucine supplementation. Through a comprehensive genetic screen, we show that leucine-mediated effect depends on a transfer RNA methyltransferase (NCL1), absence of which decouples transcription and translation in the cell, inhibits the conversion of leucine to ketoisocaproate, and leads to tricarboxylic acid cycle block. We therefore propose a role of NCL1 in regulating metabolic homeostasis through translational control.


Assuntos
Metabolômica/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , tRNA Metiltransferases/metabolismo , Cisteína/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Biossíntese de Proteínas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
19.
J Food Biochem ; 43(3): e12745, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353560

RESUMO

Sour rot is a leading disease of citrus fruit caused by the postharvest pathogen Geotrichum citri-aurantii. It has been reported that essential oils can be used as substitutes for synthetic fungicides to control the pathogen. In this study, changes in metabolites and antifungal effects of G. citri-aurantii treated with peppermint oil (PO) were investigated. The inhibition rate of the mycelial growth increased as the PO concentration increased, and 6 µl PO/disk resulted in a radial growth inhibition of 79.2%. The electrical conductivity of G. citri-aurantii treated with PO increased compared to the control. By comparing the metabolic profiles of treated and untreated G. citri-aurantii cells, a total of 53 distinct metabolites 9 were up-regulated and 44 were down-regulated were found, including 16 lipid metabolites, 6 carbohydrate metabolites, 2 amino acid metabolites, 5 alcohols, 2 glycoside metabolites, and 3 ketone metabolites, etc, and these metabolites are involved in 25 major metabolic pathways. PRACTICAL APPLICATIONS: Chemical fungicides can effectively control G. citri-aurantii during fruit postharvest period. However, synthetic chemical fungicides have gradually led to buildup of resistance of fungil, which seriously causes the frequent of food-borne diseases. PO extracted from natural plants can be used as natural additive in many foods due to their antioxidant, antibacterial, and antifungal properties. Therefore, PO can be considered as a promising bacteriostatic agent for the defense of G. citri-aurantii during fruit postharvest period.


Assuntos
Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Geotrichum/química , Geotrichum/efeitos dos fármacos , Óleos de Plantas/farmacologia , Cromatografia Líquida de Alta Pressão , Citrus/microbiologia , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Geotrichum/genética , Geotrichum/metabolismo , Mentha piperita , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
20.
Oxid Med Cell Longev ; 2019: 5459862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198492

RESUMO

A new compound, bis(4-hydroxybenzyl)ether mono-ß-L-galactopyranoside (1), was isolated from the rhizome of Gastrodia elata Blume. Its structure was elucidated using extensive spectroscopic analysis, including 1D and 2D NMR, HR-ESI-TOF-MS, and chemical derivatization. Compound 1 extended the replicative lifespan of K6001 and the chronological lifespan of YOM36 yeast strains. To understand the mechanism of action, oxidative stress assessment, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, catalase (CAT) and total glutathione peroxidase (GPx) activity assays, and replicative lifespan assay of sod1, sod2, uth1, and skn7 yeast mutant strains were performed. Results indicated the significant increase in the survival rate of yeast under oxidative stress after treatment with 1. ROS and MDA levels were reduced significantly. Meanwhile, the activity of CAT and GPx was significantly increased. The lifespan of sod1, sod2, uth1, and skn7 mutants of K6001 was not affected by 1. Furthermore, we investigated the gene expression related to longevity after administrating 1. The significant increase of Sir2 and reduction of Uth1 gene expression in the 1-treated group were observed. These results indicated that antioxidative stress played an important role in the antiaging effect of 1; Sir2 and Uth1 genes were involved in antiaging effects of 1.


Assuntos
Envelhecimento/efeitos dos fármacos , Galactosídeos/química , Galactosídeos/farmacologia , Gastrodia/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Antioxidantes/farmacologia , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA