Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(4): 677-694, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299219

RESUMO

The world is experiencing increased frequency, duration, and severity of life-threatening heat extremes. Most hospitalizations and excess deaths during extreme heat events are associated with preexisting diseases in older adults. As climate change persists, the global population ages and the number of individuals with chronic diseases expands, more people are at risk of adverse health outcomes during extreme heat events. Therefore, proactive preventive measures are urgently needed to mitigate heat-related health risks within these populations. In this context, passive heat therapy (e.g., hot baths, saunas, and water-perfused suits) emerges as a promising countermeasure to improve physiological resilience to a warming planet. Passive heating improves cardiovascular function and overall health in older adults and individuals living with chronic diseases, offering the prospect of reducing cardiovascular strain during hotter days. Moreover, some studies suggest that passive heat therapy can be an effective strategy for heat acclimation (i.e., improved thermoregulation). This review describes the existing literature on the effects of passive heat therapy on cardiovascular and thermoregulatory responses in individuals with higher heat-related health risks and explores the use of passive heating as a strategy for heat acclimation to mitigate health risks during extreme heat events.NEW & NOTEWORTHY Passive heat therapy improves cardiovascular function and health in middle-aged and older adults living with or without chronic diseases. In addition, preliminary studies indicate that passive heat interventions can induce heat acclimation, improving thermoregulatory responses. Thus, passive heat therapy could serve as a preventive measure for people at risk of adverse health outcomes during extreme heat events, improving resilience to ongoing climate change.


Assuntos
Sistema Cardiovascular , Temperatura Alta , Pessoa de Meia-Idade , Humanos , Idoso , Regulação da Temperatura Corporal/fisiologia , Doença Crônica , Avaliação de Resultados em Cuidados de Saúde
2.
Int J Obstet Anesth ; 57: 103961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199895

RESUMO

BACKGROUND: Hyperthermia complicates 21% of cases of intrapartum epidural analgesia, but the mechanism is unclear. One hypothesis is that blockade of cholinergic sympathetic nerves prevents active vasodilation and sweating, thus limiting heat loss. Because labour increases heat production, this could create a situation in which heat production exceeds loss, causing body temperature to rise. This physiological study tested a novel laboratory model of epidural-related hyperthermia, using exercise to simulate the increased heat production of labour and surface insulation to simulate the effect of epidural analgesia. METHODS: Twelve healthy non-pregnant participants (six female) cycled an ergometer for two hours at 20 Watts (W) on two occasions: once with surface insulation (intervention) and once without (control). Core temperature, skin temperature (eight sites), and heat loss (eight sites) were recorded. Mean body temperature and heat production were calculated. Values are mean (SD). RESULTS: Exercise increased heat production on both visits (intervention 38 (18) W; control 37 (31) W; P = 0.94). Total heat loss was less on the intervention visit (intervention 115 (19) W; control 129 (23) W; P = 0.002). Core temperature increased on both visits (intervention 0.21 (0.37)°C; control 0.19 (0.27)°C; P < 0.001). The increase in mean body temperature was greater on the intervention visit (intervention 0.47 (0.41)°C; control 0.25 (0.19)°C; P = 0.007). CONCLUSIONS: This laboratory model predicts that labour epidural analgesia limits heat loss by >14 W. Once the model is validated, it could be used to test the efficacy of potential interventions to prevent and treat epidural-related maternal hyperthermia.


Assuntos
Temperatura Corporal , Hipertermia Induzida , Humanos , Feminino , Voluntários Saudáveis , Regulação da Temperatura Corporal/fisiologia , Analgésicos
3.
J Therm Biol ; 118: 103743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979477

RESUMO

INTRODUCTION: Passive heating is receiving increasing attention within human performance and health contexts. A low-cost, portable steam sauna pod may offer an additional tool for those seeking to manipulate physiological (cardiovascular, thermoregulatory and sudomotor) and perceptual responses for improving sporting or health profiles. This study aimed to 1) report the different levels of heat stress and determine the pods' inter-unit reliability, and 2) quantify the reliability of physiological and perceptual responses to passive heating. METHOD: In part 1, five pods were assessed for temperature and relative humidity (RH) every 5 min across 70 min of heating for each of the 9 settings. In part 2, twelve males (age: 24 ± 4 years) completed two 60 min trials of passive heating (3 × 20 min at 44 °C/99% RH, separated by 1 week). Heart rate (HR), rectal (Trectal) and tympanic temperature (Ttympanic) were recorded every 5 min, thermal comfort (Tcomfort) and sensation (Tsensation) every 10 min, mean arterial pressure (MAP) at each break period and sweat rate (SR) after exiting the pod. RESULTS: In part 1, setting 9 provided the highest temperature (44.3 ± 0.2 °C) and longest time RH remained stable at 99% (51±7 min). Inter-unit reliability data demonstrated agreement between pods for settings 5-9 (intra-class correlation [ICC] >0.9), but not for settings 1-4 (ICC <0.9). In part 2, between-visits, high correlations, and low typical error of measurement (TEM) and coefficient of variation (CV) were found for Trectal, HR, MAP, SR, and Tcomfort, but not for Ttympanic or Tsensation. A peak Trectal of 38.09 ± 0.30 °C, HR of 124 ± 15 b min-1 and a sweat loss of 0.73 ± 0.33 L were reported. No between-visit differences (p > 0.05) were observed for Trectal, Ttympanic, Tsensation or Tcomfort, however HR (+3 b.min-1) and MAP (+4 mmHg) were greater in visit 1 vs. 2 (p < 0.05). CONCLUSION: Portable steam sauna pods generate reliable heat stress between-units. The highest setting (44 °C/99% RH) also provides reliable but modest adjustments in physiological and perceptual responses.


Assuntos
Banho a Vapor , Vapor , Masculino , Humanos , Adulto Jovem , Adulto , Reprodutibilidade dos Testes , Calefação , Regulação da Temperatura Corporal/fisiologia , Temperatura Alta , Frequência Cardíaca/fisiologia
5.
Am J Emerg Med ; 72: 188-192, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562177

RESUMO

INTRODUCTION: In some athletic, occupational, military and emergency settings, cold intravenous (IV) fluids are used to facilitate whole-body cooling in an effort to treat heat illness. This treatment has anecdotal support, but currently lacks evidence supporting it as a whole-body cooling modality. Other modalities may offer superior cooling rates, and thus, patient outcomes following treatment. We sought to evaluate cooling rates of cold-IV normal saline immediately following exercise-induced hyperthermia. METHODS: Eight healthy participants (3 females; 25 ± 2y; 72.9 ± 10.9 kg) completed 2 trials in random order. Prior to exercise, participants provided a small urine sample to confirm hydration status via urine specific gravity. Wet bulb globe temperature (WBGT) was assessed throughout trials. In both trials, participants exercised outdoors until rectal temperature (Tre) reached ∼38.9 °C, or volitional exhaustion, and then were cooled. In cooling, participants received either cold-IV (∼5 °C 0.9% NaCl fluids) or no treatment (sat in the shade; passive). Throughout exercise and treatment, Tre and heart rate (HR) were monitored. During exercise and every 10 min throughout cooling, participants were asked to assess thermal sensation. RESULTS: Hydration status (P = .847) was not significantly different prior to exercise between trials. WBGT throughout was not different between trials (P = .426). Maximum Tre reached was not different between cold-IV (38.88 ± 0.30 °C) and passive cooling (38.76 ± 0.28 °C) trials (P = .184). Mean cooling rate for cold-IV (0.039 ± 0.005 °C·min-1) was significantly greater than for passive cooling (0.028 ± 0.005 °C·min-1; P = .002). Tre throughout cooling was not different between trials (P = .707), but did decrease throughout (P = .008), regardless of trial. HR was decreased over time (P < .001), but cold-IV and passive cooling were not different throughout HR recovery (P = .141). Thermal sensation decreased throughout cooling (P < .001), but was not different between trials (p = .278). CONCLUSION: Emergency medical personnel should adopt treatment protocols that employ documented effective treatments for exertional heat stroke. In isolation, our data casts significant doubt for the use of cold-IV saline infusion for whole-body cooling of hyperthermic individuals.


Assuntos
Futebol Americano , Hipertermia Induzida , Feminino , Humanos , Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Água , Hipertermia Induzida/métodos , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia
6.
Endocrinology ; 164(7)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279930

RESUMO

When mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.


Assuntos
Hipotálamo , Área Pré-Óptica , Camundongos , Masculino , Animais , Área Pré-Óptica/fisiologia , Homeostase , Hipotálamo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Neurônios/fisiologia , Glucose , Mamíferos
7.
J Therm Biol ; 114: 103576, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344017

RESUMO

BACKGROUND: Exercise-induced hyperthermia preceding the onset of exertional heatstroke requires a rapid reduction in the body core temperature (Tcore) to ensure safety. In recent years, phase-change material (PCM) cooling devices have been increasingly used for rapid cooling after hyperthermia due to their superior capacity for heat absorption. OBJECTIVES: This study aimed to evaluate the cooling performance and effectiveness of a PCM cooling blanket on heart rate (HR) and heart rate variability (HRV) recovery after exercise-induced hyperthermia. DESIGN: Randomized cross-over. METHODS: The study participants were 12 male volunteers who were engaged in professional training and completed an endurance exercise for approximately 30 min in a hot and humid environment (temperature ≈ 30 °C; relative humidity ≈ 66%). The participants underwent a 30-min cooling trial after exercise, receiving either treatment with a PCM cooling blanket (PCM group) or natural cooling (CON group). The Tcore, HR, and HRV time-domain indices were used for analysis. RESULTS: The Tcore values were significantly lower in the PCM group during cooling. Reductions in the Tcore from precooling to 20 min of cooling were significantly greater in the PCM group than in the CON group. The HR in the PCM group was lower than that recorded in the CON group at 10 and 20 min of cooling. The reduction in HR during cooling from precooling was also significantly greater in the PCM group. HRV time-domain indices during cooling in the PCM group were significantly lower compared with the CON group while elevations in some HRV time-domain indices from precooling to postcooling were significantly greater in the PCM group than in the CON group. CONCLUSIONS: The PCM cooling blanket had good cooling performance and the ability to hasten recovery of both HR and HRV. It may serve as a feasible cooling choice during transport after exercise-induced hyperthermia.


Assuntos
Hipertermia Induzida , Humanos , Masculino , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta , Estudos Cross-Over
8.
J Therm Biol ; 114: 103522, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344019

RESUMO

Physical exercise differentially increases body temperature according to the time of day, which shows the importance of circadian rhythm in thermal regulation. Given its contribution in central pathways involved in thermoregulation, orexin A could play a role in the regulation of core body temperature during and after exercise. To test this hypothesis, we assessed the effect of exercise, performed at two times of day, on core temperature and on the amount of orexin A in the production zone, i.e., the dorsal hypothalamus. Forty-nine male Wistar rats underwent forced treadmill exercise during the HG phase and HL phase of core temperature. Basal core temperature was recorded continuously for 48 h by implanted telemetric sensors in 11 rats. Regulation of core temperature during exercise (20 min) and after each exercise (60 min) was modeled with a modified logistic-type function. During HG exercise, core temperature curve reached a significantly higher maximum (asymptote: +0.70 ± 0.10 °C) and took longer to attain the strongest inclination of the core temperature regulation curve (Xmid: 3.46 ± 0.72 min). After HG exercise, time of recovery was significantly longer than after HL exercise. In male rats, thermoregulatory response to acute physical exercise was influenced by the time of day. There was no effect of either physical activity or time of day on the level of orexin A in the dorsal hypothalamus. Our results suggest that orexin A in the dorsal hypothalamus is not involved in the effects of physical exercise on thermoregulation.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Animais , Masculino , Ratos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipotálamo/metabolismo , Orexinas/metabolismo , Ratos Wistar
9.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R69-R80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184224

RESUMO

Hyperthermia stimulates ventilation (hyperthermia-induced hyperventilation). In exercising humans, once the core temperature reaches ∼37°C, minute ventilation (V̇e) increases linearly with rising core temperature, and the slope of the relation between V̇e and core temperature reflects the sensitivity of the response. We previously reported that sodium bicarbonate ingestion reduces V̇e during prolonged exercise in the heat without affecting the sensitivity of hyperthermia-induced hyperventilation. Here, we hypothesized that reductions in V̇e associated with sodium bicarbonate ingestion reflect elevation of the core temperature threshold for hyperthermia-induced hyperventilation. Thirteen healthy young males ingested sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg body wt) (NaCl trial), after which they performed a cycle exercise at 50% of peak oxygen uptake in the heat (35°C and 50% relative humidity) following a pre-cooling. The pre-cooling enabled detection of an esophageal temperature (Tes: an index of core temperature) threshold for hyperthermia-induced hyperventilation. The Tes thresholds for increases in V̇e were similar between the two trials (P = 0.514). The slopes relating V̇E to Tes also did not differ between trials (P = 0.131). However, V̇e was lower in the NaHCO3 than in the NaCl trial in the range of Tes = 36.8-38.4°C (P = 0.007, main effect of trial). These results suggest that sodium bicarbonate ingestion does not alter the core temperature threshold or sensitivity of hyperthermia-induced hyperventilation during prolonged exercise in the heat; instead, it downshifts the exercise hyperpnea.


Assuntos
Hipertermia Induzida , Bicarbonato de Sódio , Humanos , Masculino , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipertermia , Hiperventilação , Respiração , Cloreto de Sódio , Temperatura
10.
PLoS One ; 18(5): e0284824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141220

RESUMO

Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.


Assuntos
Regulação da Temperatura Corporal , Hipotálamo , Animais , Camundongos , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Temperatura
11.
J Therm Biol ; 113: 103529, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055134

RESUMO

Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.


Assuntos
Agmatina , Área Pré-Óptica , Ratos , Masculino , Animais , Área Pré-Óptica/fisiologia , Agmatina/farmacologia , Regulação da Temperatura Corporal/fisiologia , Hipotálamo , Estremecimento
12.
Artigo em Inglês | MEDLINE | ID: mdl-36767447

RESUMO

Heat exposure provokes stress on the human body. If it remains constant, it leads to adaptations such as heat acclimation. This study aims to observe the evolution of heart rate (HR), core temperature (Tcore), and skin temperature (Tskin) in an intervallic program of exposure to extreme heat. Twenty-nine healthy male volunteers were divided into a control group (CG; n = 14) and an experimental group (EG; n = 15). EG experienced nine sessions (S) of intervallic exposure to high temperatures (100 ± 2 °C), whereas CG was exposed to ambient temperatures (22 ± 2 °C). HR, Tskin, and Tcore were monitored in S1, 4, 5, 8, and 9. An important increase in HR occurred in the S4 compared to the rest (p < 0.05) in EG. A lower HR was discovered in S8 and S9 compared to S4 and in S9 in relation to S1 (p < 0.05) in EG. EG experiences a gradual decrease in Tcore and Tskin, which was detected throughout the assessments, although it was only significant in the S8 and S9 (p < 0.05). Interval exposure to heat at 100 ± 2 °C elicits stress on the human organism, fundamentally increasing Tcore, Tskin, and FC. This recurring stress in the full program caused a drop in the thermoregulatory response as an adaptation or acclimation to heat.


Assuntos
Temperatura Corporal , Banho a Vapor , Masculino , Humanos , Temperatura Corporal/fisiologia , Temperatura , Temperatura Alta , Frequência Cardíaca , Regulação da Temperatura Corporal/fisiologia , Aclimatação
13.
Neuron ; 111(3): 387-404.e8, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476978

RESUMO

Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Camundongos , Animais , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipotálamo , Área Pré-Óptica/fisiologia , Neurônios GABAérgicos , Mamíferos
14.
J Therm Biol ; 106: 103191, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35636879

RESUMO

Anxiety resulting from psychogenic stimuli elicit stress-induced hyperthermia in rats, often called "psychogenic fever", which is part of a coordinated response to situations seen as novel or distressing. Brain transient receptor potential vanilloid 1 (TRPV1) channels modulate both thermoregulation and animal behavior; however, the role of peripheral TRPV1 channels in regulating these responses during exposure to an anxiogenic environment has not been determined. Thus, the present study aimed to investigate the involvement of abdominal TRPV1 channels in stress-induced hyperthermia and behavior in rats subjected to an unconditioned anxiety test. Desensitized rats (peripheral desensitization of TRPV1 channels with resiniferatoxin; RTX) and their respective controls were subjected to a 15-min open field (OF) test. The core body temperature (Tcore), tail skin temperature (Tskin), and rats' movements inside the arena were recorded. The OF test induced a similar increase in Tcore in both groups throughout the exposure time; however, at the recovery period, the RTX-treated rats had a slower reduction in Tcore due to lower tail skin heat loss. Tskin decreased significantly in both groups during exposure to OF but, during recovery, the RTX-treated rats showed impaired skin vasodilation. Also, RTX-treated rats entered fewer times and spent less time in the OF center square, suggesting an anxiety-related behavior. Our findings indicate that, under stressful conditions, peripheral TRPV1 channels modulate thermoregulatory and behavioral responses. The TRPV1 desensitization induces a more prolonged hyperthermic response due to lower cutaneous heat dissipation, alongside a more evident anxiety-like behavior in rats subjected to the OF apparatus.


Assuntos
Hipertermia Induzida , Canais de Potencial de Receptor Transitório , Animais , Regulação da Temperatura Corporal/fisiologia , Ratos , Canais de Cátion TRPV/fisiologia
15.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163194

RESUMO

Good sleep quality is essential for maintaining the body's attention during wakefulness, which is easily affected by external factors such as an ambient temperature. However, the mechanism by which an ambient temperature influences sleep-wake behaviors remains unclear. The dorsomedial hypothalamus (DMH) has been reported to be involved in thermoregulation. It also receives projection from the preoptic area, which is an important region for sleep and energy homeostasis and the suprachiasmatic nucleus-a main control area of the clock rhythm. Therefore, we hypothesized that the DMH plays an important role in the regulation of sleep related to ambient temperatures. In this study, we found that cold exposure (24/20/16/12 °C) increased wakefulness and decreased non-rapid eye movement (NREM) sleep, while warm exposure (32/36/40/44 °C) increased NREM sleep and decreased wakefulness compared to 28 °C conditions in wild-type mice. Then, using non-specific and specific apoptosis, we found that lesions of whole DMH neurons and DMH γ-aminobutyric acid (GABA)-ergic neurons induced by caspase-3 virus aggravated the fluctuation of core body temperature after warm exposure and attenuated the change in sleep-wake behaviors during cold and warm exposure. However, chemogenetic activation or inhibition of DMH GABAergic neurons did not affect the sleep-wake cycle. Collectively, our findings reveal an essential role of DMH GABAergic neurons in the regulation of sleep-wake behaviors elicited by a change in ambient temperature.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Sono/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Núcleo Hipotalâmico Dorsomedial , Neurônios GABAérgicos/fisiologia , Temperatura Alta , Hipotálamo Médio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade do Sono , Sono REM , Temperatura , Vigília/fisiologia
16.
Nat Rev Neurosci ; 23(1): 35-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728833

RESUMO

Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.


Assuntos
Hipotálamo/fisiologia , Hipotálamo/fisiopatologia , Bulbo/fisiologia , Bulbo/fisiopatologia , Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Estresse Fisiológico , Estresse Psicológico/fisiopatologia , Animais , Regulação da Temperatura Corporal/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Humanos , Vias Neurais/fisiologia
17.
Eur J Sport Sci ; 22(2): 209-217, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33357070

RESUMO

AbstractWe investigated the effects of taurine supplementation on cycling time to exhaustion in cold conditions. Eleven males cycled to exhaustion at a power output equivalent to the mid-point between ventilatory threshold and maximum aerobic power following 15-min rest in the cold (apparent temperature of ∼ 4°C; air flow of 4.17 m s-1). Two hours before, participants ingested taurine (50 mg·kg-1) or placebo beverage. Pulmonary gases, carbohydrate (CHO) and fat oxidation, body temperatures, mean local sweat rate, heart rate, rate of perceived exertion (RPE) and thermal comfort were recorded. Time to exhaustion was not different between trials (taurine = 14.6 ± 4.7 min; placebo = 13.4 ± 5.6 min, P = 0.061, d = 0.27). There were no effects (P > 0.05) of taurine on core temperature, mean skin temperature or local sweat rates. However, the placebo condition showed greater (P < 0.05) reductions in arm-to-finger temperature gradient (i.e. vasodilation) across pre-exercise passive cold exposure and increased CHO oxidation (P < 0.05). Participants also reached a thermally 'comfortable' level quicker in the taurine condition (P < 0.05). A 50 mg·kg-1 dose of taurine did not statistically benefit endurance exercise after moderate cold exposure but conferred some potential vascular and metabolic effects.


Assuntos
Regulação da Temperatura Corporal , Tolerância ao Exercício , Taurina , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Suplementos Nutricionais , Tolerância ao Exercício/efeitos dos fármacos , Tolerância ao Exercício/fisiologia , Humanos , Masculino , Temperatura Cutânea , Taurina/administração & dosagem
18.
Mol Metab ; 55: 101401, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823066

RESUMO

OBJECTIVE: The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS: Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS: We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS: Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.


Assuntos
Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Encéfalo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Técnicas de Introdução de Genes/métodos , Hipotálamo/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/fisiologia , Medula Espinal/metabolismo
19.
Mol Metab ; 55: 101405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844020

RESUMO

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Assuntos
Marcação de Genes/métodos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/metabolismo
20.
Sports Med ; 51(12): 2655-2664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165763

RESUMO

OBJECTIVES: Despite the well-established benefits of exercise, pregnant women are discouraged from physical activity in hot/humid conditions to avoid hyperthermia (core temperature (Tcore) ≥ 39.0 °C). Recent epidemiological evidence also demonstrates greater risk of negative birth outcomes following heat exposure during pregnancy, possibly due to thermoregulatory impairments. We aimed to determine (1) the risk of pregnant women exceeding a Tcore of 39.0 °C during moderate-intensity exercise in the heat; and (2) if any thermoregulatory impairments are evident in pregnant (P) versus non-pregnant (NP) women. METHODS: Thirty participants (15 pregnant in their second trimester or third trimester) completed two separate exercise-heat exposures in a climate chamber (32 °C, 45%RH). On separate occasions, each participant cycled on a semi-recumbent cycle ergometer for 45 min at a workload representative of a moderate-intensity (1) non-weight-bearing (NON-WB), or (2) weight-bearing (WB) activity. Thermoregulatory responses were monitored throughout. RESULTS: The highest rectal temperature observed in a pregnant individual was 37.93 °C. Mean end-exercise rectal temperature did not differ between groups (P:37.53 ± 0.22 °C, NP:37.52 ± 0.34 °C, P = 0.954) in the WB trial, but was lower in the P group (P:37.48 ± 0.25 °C, vs NP:37.73 ± 0.38 °C, P = 0.041) in the NON-WB trial. Whole-body sweat loss was unaltered by pregnancy during WB (P:266 ± 62 g, NP:264 ± 77 g; P = 0.953) and NON-WB P:265 ± 51 g, NP:300 ± 75 g; P = 0.145) exercise. Pregnant participants reported higher ratings of thermal sensation (felt hotter) than their non-pregnant counterparts in the WB trial (P = 0.002) but not in the NON-WB trial, (P = 0.079). CONCLUSION: Pregnant women can perform 45 min of moderate-intensity exercise at 32 °C, 45%RH with very low apparent risk of excessive maternal hyperthermia. No thermoregulatory impairments with pregnancy were observed.


Assuntos
Temperatura Alta , Hipertermia Induzida , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Gravidez , Sudorese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA