Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542997

RESUMO

The current study aimed to evaluate the presence of chemical variations in essential oils (EOs) extracted from Artemisia scoparia growing at different altitudes and to reveal their antibacterial, mosquito larvicidal, and repellent activity. The gas chromatographic-mass spectrometric analysis of A. scoparia EOs revealed that the major compounds were capillene (9.6-31.8%), methyleugenol (0.2-26.6%), ß-myrcene (1.9-21.4%), γ-terpinene (1.5-19.4%), trans-ß-caryophyllene (0.8-12.4%), and eugenol (0.1-9.1%). The EO of A. scoparia collected from the city of Attock at low elevation was the most active against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa bacteria (minimum inhibitory concentration of 156-1250 µg/mL) and showed the best mosquito larvicidal activity (LC50, 55.3 mg/L). The EOs of A. scoparia collected from the high-altitude areas of Abbottabad and Swat were the most repellent for females of Ae. aegypti and exhibited repellency for 120 min and 165 min, respectively. The results of the study reveal that different climatic conditions and altitudes have significant effects on the chemical compositions and the biological activity of essential oils extracted from the same species.


Assuntos
Aedes , Artemisia , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Sesquiterpenos Policíclicos , Scoparia , Feminino , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Altitude , Inseticidas/química , Antibacterianos/farmacologia , Larva , Óleos de Plantas/química
2.
Waste Manag ; 169: 1-10, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37384969

RESUMO

Turmeric (Curcuma longa L.) is a significant crop that has historically been used worldwide as a medicinal plant, spice, food colouring agent, and a significant ingredient in cosmetic industries. After harvesting rhizomes, leaves are considered waste material. This research study aims to extract and chemically characterise the essential oil from the leaves waste of turmeric with an evaluation of different insecticidal, antioxidant, and phytotoxic activities. Subsequently, the contact toxicity, fumigant toxicity, and repellent activity were evaluated against two key stored grain insect species. The gas chromatography-mass spectrometry (GC-MS) characterisation revealed that α-phellandrene (28.95%), 2-carene (16.51%), eucalyptol (10.54%) and terpinolene (10.24%) were the major chemical constituents. The study's findings on the insecticidal effects of essential oils extracted from turmeric leaves revealed noteworthy repellent, contact (at 24 h, LC50 = 6.51 mg/cm2 for Tribolium castaneum and LC50 = 4.74 mg/cm2 for Rhyzopertha dominica) and fumigant toxicities (at 24 h, LC50 = 2.57 mg/L air for T. castaneum and LC50 = 2.83 mg/L air for R. dominica), against two key stored grain insects. In addition, turmeric leaf essential oil showed notable antioxidant activity (IC50 = 10.04 ± 0.03 µg/mL for DPPH assay; IC50 = 14.12 ± 0.21 µg/mL for ABTS assay. Furthermore, a phytotoxicity study was carried out on stored paddy seeds and no toxic effects were found on germination rate and seedling growth. So, it might be expected that the essential oils extracted from the turmeric leaf waste could be valorised and demonstrate their potential as safe botanical insecticides against stored-product insects, with noble antioxidant properties.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/química , Inseticidas/farmacologia , Antioxidantes/farmacologia , Curcuma , Insetos , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química
3.
Sci Rep ; 13(1): 6001, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045885

RESUMO

Tithonia diversifolia is widely used in African traditional medicine for the treatment of a large number of ailments and disorders, including malaria. In the present study, we evaluated the repellent activity of essential oils (EO) of this plant against Anopheles coluzzii, a major vector of malaria in Africa. Fresh leaves of T. diversifolia were used to extract EO, which were used to perform repellency assays in the laboratory and in the field using commercially available N,N-Diethyl-meta-toluamide (DEET) and Cymbopogon (C.) citratus EO as positive controls and vaseline as negative control. The repellency rates and durations of protection of the human volunteers involved were used as measures of repellent activity. Chemical composition of the T. diversifolia EO was established further by gas chromatography coupled with mass spectrometry. The moisture content and oil yield were 81% and 0.02% respectively. A total of 29 compounds in the T. diversifolia EO was identified, with D-limonene (20.1%), α-Copaene (10.3%) and o-Cymene (10.0%) as the most represented. In field studies, the mean time of protection against mosquito bites was significantly lower in T. diversifolia EO-treated volunteers compared to treatments with C. citratus EO (71 min versus 125 min, p = 0.04), but significantly higher when compared with the non-treated volunteers (71 min vs 0.5 min, p = 0.03). The same pattern was found in laboratory repellency assays against A. coluzzii. In contrast, repulsion rates were statistically similar between T. diversifolia EO and positive controls. In conclusion, the study suggests promising repellent potential of leaves of T. diversifolia EO against A. coluzzii.


Assuntos
Anopheles , Asteraceae , Repelentes de Insetos , Malária , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Asteraceae/química , Tithonia , Cromatografia Gasosa-Espectrometria de Massas , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , DEET/farmacologia , Malária/prevenção & controle , Óleos de Plantas/farmacologia
4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985610

RESUMO

Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2-95.5%). The main components were 1,8-cineole (65.6-86.1%), α-terpinyl acetate (2.5-7.6%), o-cymene (3.3-7.5%), and α-terpineol (3.3-3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.


Assuntos
Eucalyptus , Repelentes de Insetos , Myrtaceae , Óleos Voláteis , Óleos Voláteis/química , Eucalyptus/química , Myrtaceae/química , Folhas de Planta/química , Repelentes de Insetos/química , Antibacterianos/química , Óleos de Plantas/química
5.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771017

RESUMO

Repellents are effective personal protective means against outdoor biting mosquitoes. Repellent formulations composed of EOs are finding increased popularity among consumers. In this study, after an initial screening of 11 essential oils (EOs) at the concentration of 33 µg/cm2, five of the most repellent EOs, Perovskia atriplicifolia, Citrus reticulata (fruit peels), C. reticulata (leaves), Mentha longifolia, and Dysphania ambrosioides were further investigated for repellent activity against Aedes aegypti mosquitoes in time span bioassays. When tested at the concentrations of 33 µg/cm2, 165 µg/cm2 and 330 µg/cm2, the EO of P. atriplicifolia showed the longest repellent effect up to 75, 90 and 135 min, respectively, which was followed by C. reticulata (peels) for 60, 90 and 120 min, M. longifolia for 45, 60 and 90 min, and C. reticulata (leaves) for 30, 45 and 75 min. Notably, the EO of P. atriplicifolia tested at the dose of 330 µg/cm2 showed complete protection for 60 min which was similar to the commercial mosquito repellent DEET. Gas chromatographic-mass spectrometric analyses of the EOs revealed camphor (19.7%), limonene (92.7%), sabinene (24.9%), carvone (82.6%), and trans-ascaridole (38.8%) as the major constituents of P. atriplicifolia, C. reticulata (peels), C. reticulata (leaves), M. longifolia, and D. ambrosioides, respectively. The results of the present study could help develop plant-based commercial repellents to protect humans from dengue mosquitoes.


Assuntos
Aedes , Dengue , Repelentes de Insetos , Óleos Voláteis , Humanos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Mosquitos Vetores , Dengue/prevenção & controle
6.
Physiol Plant ; 174(6): e13799, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36251218

RESUMO

There are more than 1200 species of whiteflies found across the globe. Due to the high level of resistance of whitefly against synthetic insecticides, alternate pest management measures have their significance. Plant essential oils (EOs) affect insect pests in many ways, such as via stimulatory, deterrent, toxic, and hormonal effects. This study was designed to determine the repellency of EOs, toxicity, and oviposition deterrent activities of Allium ascalonicum, Cinnamomum camphora, and Mentha haplocalyx against adult whiteflies. In repellency determination experiments, a single tomato plant was treated with 10 ml of ethanol-extracted EO with 1000 ppm concentration. Results showed that C. camphora EO was the most repellent for whitefly compared to M. haplocalyx and A. ascalonicum. The oviposition deterrent experiments revealed that C. camphora has the highest oviposition deterrent effect, followed by M. haplocalyx and A. ascalonicum. A single plant treatment method was used to assess the contact toxicity of three EOs against whitefly after 12, 24, 48, and 72 h of exposure. The results revealed that C. camphora is more toxic to whitefly than M. haplocalyx and A. ascalonicum. After determining the antagonistic effects of these EOs, the oils were analyzed using gas chromatography/mass spectrometry to identify the chemical components. It can be concluded that C. camphora is the most effective oil EO in terms of toxicity, repellence, and oviposition deterrence, followed by M. haplocalyx and A. ascalonicum under greenhouse conditions. Our results introduce some new eco-friendly plant EOs to control whiteflies.


Assuntos
Hemípteros , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Inseticidas/farmacologia , Inseticidas/química
7.
J Toxicol Environ Health A ; 85(14): 591-602, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35435144

RESUMO

Tribolium castaneum is one of the most harmful storage pests in the world. The aim of this study was to determine the chemical composition, repellent, and contact activities of Moutan cortex essential oil against this insect pest. In addition, the effects of Moutan cortex were examined on the expressions of three major detoxifying enzyme genes in T. castaneum. Four components were identified in this essential oil by gas chromatography-mass spectrometry (GC-MS), which was predominantly paeonol (99.13%). Paeonol exerted significant repellent activity against T. castaneum, which was more potent than the positive control N.N-diethyl-meta-toluamide (DEET). The most significant contact toxicity was observed at 24 h after exposure to paeonol. Further, quantitative real-time PCR (qRT-PCR) was used to assess expression changes in three detoxification enzyme genes in T. castaneum, including carboxylesterase (CarE), glutathione S-transferase (Gst) and cytochrome P4506BQ8 (Cyp6bq8). Among these, Gst was most highly up-regulated after treatment with paeonol with the highest expression level of 4.9-fold (Rps18 as internal reference gene) greater than control at 24 h following treatment. Data indicated that Gst might play a critical role in metabolic detoxification of toxic xenobiotics. Taken together, our findings might lay a foundation for development of paeonol as a potential natural repellent or pesticide to control storage pests.


Assuntos
Repelentes de Insetos , Inseticidas , Óleos Voláteis , Tribolium , Animais , Medicamentos de Ervas Chinesas , Expressão Gênica , Repelentes de Insetos/química , Repelentes de Insetos/toxicidade , Óleos Voláteis/toxicidade , Paeonia , Tribolium/genética
8.
Sci Rep ; 12(1): 2180, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140283

RESUMO

Mosquito-borne infections like dengue, malaria, chikungunya, etc. are a nuisance and can cause profound discomfort to people. Due to the objectional side effects and toxicity associated with synthetic pyrethroids, N,N-diethyl-3-methylbenzamide (DEET), N,N-diethyl phenylacetamide (DEPA), and N,N-di ethyl benzamide (DEBA) based mosquito repellent products, we developed an essential oil (EO) based mosquito repellent cream (EO-MRC) using clove, citronella and lemongrass oil. Subsequently, a formulation characterization, bio-efficacy, and safety study of EO-MRC were carried out. Expression of Anti-OBP2A and TRPV1 proteins on mosquito head parts were studied by western blotting. In-silico screening was also conducted for the specific proteins. An FT-IR study confirmed the chemical compatibility of the EOs and excipients used in EO-MRC. The thermal behaviour of the best EOs and their mixture was characterized by thermogravimetric analysis (TGA). GC-MS examination revealed various chemical components present in EOs. Efficacy of EO-MRC was correlated with 12% N,N-diethyl benzamide (DEBA) based marketed cream (DBMC). Complete protection time (CPT) of EO-MRC was determined as 228 min. Cytotoxicity study on L-132 cell line confirmed the non-toxic nature of EO-MRC upon inhalation. Acute dermal irritation study, acute dermal dose toxicity study, and acute eye irritation study revealed the non-toxic nature of EO-MRC. Non-target toxicity study on Danio rerio confirmed EO-MRC as safer for aquatic non-target animals. A decrease in the concentration of acetylcholinesterase (AChE) was observed in transfluthrin (TNSF) exposed Wistar rats. While EO-MRC did not alter the AChE concentrations in the exposed animals. Results from western blotting confirmed that Anti-OBP2A and TRPV1 proteins were inhibited in TNSF exposed mosquitoes. Mosquitoes exposed to EO-MRC showed a similar expression pattern for Anti-OBP2A and TRPV1 as the control group. In silico study revealed eight identified compounds of the EOs play significant roles in the overall repellency property of the developed product. The study emphasizes the mosquito repellent activity of EO-MRC, which could be an effective, eco-friendly, and safer alternative to the existing synthetic repellents for personal protection against mosquitoes during field conditions.


Assuntos
Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Creme para a Pele/química , Creme para a Pele/farmacologia , Acetilcolinesterase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Culicidae , Cymbopogon/química , Composição de Medicamentos , Olho/efeitos dos fármacos , Feminino , Humanos , Repelentes de Insetos/efeitos adversos , Masculino , Simulação de Acoplamento Molecular , Óleos Voláteis/efeitos adversos , Óleos de Plantas/química , Coelhos , Ratos Wistar , Pele/efeitos dos fármacos , Creme para a Pele/efeitos adversos , Testes de Irritação da Pele , Syzygium/química , Terpenos/química , Peixe-Zebra
9.
J Sci Food Agric ; 102(3): 1105-1113, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34322881

RESUMO

BACKGROUND: Global warming and the indiscriminate use of pesticides have increased the propagation of the stored-product insect pests, leading to enormous losses in the agriculture and food industries. The most used insect repellents are synthetic derivatives; however, these have an adverse effect on human health as well as on the environment. Therefore, we attempted to find materials with insect repellent activity in natural products. The present study aimed to identify the single chemical component with intense insect repellent activity in extracts from four different Oriental medicinal plant materials: (i) Anethum graveolens L. (dill) seeds; (ii) Artemisia capillaris Thunb. (capillary wormwood) leaves; (iii) smoked Prunus mume Siebold & Zucc. (mume) fruits; and (iv) Rhus javanica L. (galls). RESULTS: As a result of the bioassay-guided fractionation of each extract against the Plodia interpunctella, stored-product insect, the n-hexane fraction of dill seeds extract was confirmed as the optimal fraction between all of the fractions. In total, 32 chemical components were identified from the n-hexane fraction of dill seeds by gas chromatography-mass spectrometry analysis, and the two main components were dillapiole (47.51%) and carvone (26.76%). Of the two components, dillapiole was confirmed as the key component playing an essential role in insect repellent activity. CONCLUSION: Our study suggests that dillapiole has the potential to be used as a natural insect repellent for the control of P. interpunctella infestation in agricultural and food products during distribution and storage. © 2021 Society of Chemical Industry.


Assuntos
Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/farmacologia , Lepidópteros/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Anethum graveolens/química , Animais , Artemisia/química , Brucea javanica/química , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/química , Lepidópteros/fisiologia , Extratos Vegetais/química , Prunus/química
10.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786852

RESUMO

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Assuntos
Antifúngicos/química , Aspergillus/química , Repelentes de Insetos/química , Panax/química , Animais , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Bombyx/efeitos dos fármacos , Bombyx/crescimento & desenvolvimento , Enedi-Inos/química , Enedi-Inos/isolamento & purificação , Enedi-Inos/farmacologia , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Panax/crescimento & desenvolvimento , Panax/metabolismo , Phoma/efeitos dos fármacos , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
11.
PLoS One ; 16(11): e0260281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843539

RESUMO

BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae). METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus. RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents. CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.


Assuntos
Aedes/efeitos dos fármacos , Areca/química , Inseticidas/toxicidade , Nozes/química , Extratos Vegetais/toxicidade , Aedes/fisiologia , Animais , Controle de Insetos , Repelentes de Insetos/química , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/toxicidade , Inseticidas/química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/fisiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
12.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770769

RESUMO

The objective of this study was to assess the biological activity of essential oils (EOs) of four Juniperus species obtained via two different distillation methods and their potential as biopesticides. The studied factors were juniper species (Juniperus communis L., J. oxycedrus L., J. pygmaea C. Koch., and J. sibirica Burgsd), plant sex (male (M) and female (F)), and distillation method (hydrodistillation via a standard Clevenger apparatus (ClevA) and semi-commercial (SCom) steam distillation). The hypothesis was that the EO will have differential antioxidant, antimicrobial, and insecticidal activities as a function of plant species, plant sex, and distillation method. The two distillation methods resulted in similar EO composition within a given species. However, there were differences in the EO content (yield) due to the sex of the plant, and also differences in the proportions of some EO components. The concentration of α-pinene, ß-caryophyllene, δ-cadinene and δ-cadinol was dissimilar between the EO of M and F plants within all four species. Additionally, M and F plants of J. pygmaea, and J. sibirica had significantly different concentrations of sabinene within the respective species. The EOs obtained via ClevA extraction showed higher antioxidant capacity within a species compared with those from SCom extraction. All of the tested EOs had significant repellent and insecticidal activity against the two aphid species Rhopalosiphum padi (bird cherry-oat aphid) and Sitobion avenae (English grain aphid) at concentrations of the EO in the solution of 1%, 2.5%, and 5%. The tested EOs demonstrated moderate activity against selected pathogens Fusarium spp., Botrytis cinerea, Colletotrichum spp., Rhizoctonia solani and Cylindrocarpon pauciseptatum. The results demonstrate that the standard ClevA would provide comparable EO content and composition in comparison with SCom steam distillation; however, even slight differences in the EO composition may translate into differential bioactivity.


Assuntos
Agentes de Controle Biológico/farmacologia , Juniperus/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Agentes de Controle Biológico/química , Fracionamento Químico/instrumentação , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óleos de Plantas/química
13.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770847

RESUMO

The objective of this study was to establish the chromatographic fingerprints of the essential oil (EO) from Stellera chamaejasme flowers collected from various natural sites by gas chromatography (GC) combined with chemometric methods. The EO was obtained by hydrodistillation, and its chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). Most components were identified as ketones and the relatively high-content components were fitone (38.973%), n-hentriacontane (5.807%), myristic acid (4.944%) and phytol (3.988%). In addition, the repellent activities of the EO from S. chamaejasme flowers and its four main chemical compounds were evaluated against three stored product pests (Tribolium castaneum, Lasioderma serricorne, Liposcelis bostrychophila) for the first time. In this work, the EO and the four chemical compounds showed a repellent effect against three storage pests after 2 and 4 h exposure. The experimental method and repellent activity of S. chamaejasme flower EO could provide a basis for the development of botanical pesticide and the utilization of the rich plant resources of S. chamaejasme in the future.


Assuntos
Cromatografia Gasosa , Flores/química , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Malvales/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/análise , Óleos Voláteis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684884

RESUMO

Cinnamomum verum is widely used in traditional medicines, and the different parts of the plant, such as bark, leaves, and flowers, are used for essential oil production. The present study compared the chemical composition of the essential oil of C. verum extracted from the leaves and flowers. In addition, efficacy of these essential oils against the two common pests Sitophilus oryzae and Callosobruchus maculatus was also evaluated. The results indicated the presence of cinnamaldehyde, eugenol, caryophyllene, and linalool in these essential oils, however, at different concentrations. The leaf essential oil was found to be 10-20% more effective as a fumigant against both the pests. Likewise, the leaf essential oil found to repel these pests even at lower concentrations than that of flower essential oil of C. verum. Besides, these essential oils were also effective in controlling the growth of various gram positive and gram negative microbial pathogens and possibly a safeguard for human health. On contrary, both the essential oils were found to be safe for the application on grains, as indicated by their germination potentials. It was also observed that these essential oils do not cause any significant toxicity to guppy fishes, thus confirming their ecological safety for use as a biopesticide.


Assuntos
Antibacterianos/química , Cinnamomum zeylanicum/química , Flores/química , Repelentes de Insetos/química , Inseticidas/química , Óleos Voláteis/química , Folhas de Planta/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia
15.
Daru ; 29(2): 469-475, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34142352

RESUMO

BACKGROUND: Several species of Verbenaceae have been widely used in medicine, and some species of Verbenaceae have been observed good insecticidal activity, such as Lantana camara and Vitex negundo. There is no report about repellent activity of Clerodendrum bungei Steud. (C. bungei) against stored product insects. The chemical composition of C. bungei essential oil (EO) were identified, repellent activity of methanol extract, EO of C. bungei and two main components of EO against T. castaneum, L. serricorne and L. bostrychophila were evaluated for the first time. RESULTS: EO of C. bungei was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS) and GC. A total of 25 components of the C. bungei EO were identified. The principal compounds in the EO were myristicin (75.0%), 2,2,7,7-Tetramethyltricyclo[6.2.1.0(1,6)]undec-4-en-3-one (4.1%) and linalool (3.4%). Results of bioassays indicated that C. bungei EO exerted strong repellent activity against three target insects. As main constituents, myristicin and linalool also had certain repellency. CONCLUSION: This work suggests that the EO of C. bungei has promising potential to develop into botanical repellents for the control of pest damage in warehouses and grain stores.


Assuntos
Clerodendrum/química , Repelentes de Insetos/química , Óleos Voláteis/análise , Óleos de Plantas/análise , Monoterpenos Acíclicos/farmacologia , Derivados de Alilbenzenos/farmacologia , Animais , Dioxolanos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/farmacologia , Neópteros/efeitos dos fármacos , Neópteros/fisiologia , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia
16.
Molecules ; 26(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923002

RESUMO

Artemisia abrotanum L. (southern wormwood) is a plant species with an important position in the history of European and Asian medicine. It is a species famous as a medicinal plant in Central Asia, Asia Minor, and in South-East and Central Europe. The raw materials obtained from this species are Abrotani herba and Abrotani folium. In the traditional European medicine, they have been used successfully most of all in liver and biliary tract diseases, in parasitic diseases in children and as antipyretic medication. In the official European medicine, this plant species is recommended by the French Pharmacopoeia for use in homeopathy. In many European countries, it is used traditionally in allopathy. The latest studies on the biological activity of extracts from the aboveground parts of the plant and/or the leaves, and/or the essential oil have provided evidence of other possible applications related to their antibacterial, antifungal, antioxidant, anticancer, and antiallergic properties. The latest studies have also focused on the repellent activity of the essential oil of this species and the possibility to use it in the prevention of diseases in which insects are the vectors. The main substances obtained from the plant that are responsible for this activity are: the essential oil, coumarins, phenolic acids, and flavonoids. Some of the latest investigations emphasize the large differences in the composition of the essential oil, determined by the geographical (climatic) origin of the plant. A. abrotanum is recommended by the European Cosmetic Ingredients Database (CosIng) as a source of valuable cosmetic ingredients. Additionally, the leaves of this species possess a well-established position in the food industry. This plant species is also the object of biotechnological studies.


Assuntos
Antioxidantes/uso terapêutico , Artemisia/química , Medicina Tradicional , Óleos Voláteis/química , Antifúngicos/química , Antifúngicos/uso terapêutico , Antioxidantes/química , Cosméticos , Humanos , Repelentes de Insetos/química , Repelentes de Insetos/uso terapêutico , Óleos Voláteis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
17.
Sci Rep ; 11(1): 3944, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597617

RESUMO

The diverse flora of the Atlantic Forest is fertile ground for discovering new chemical structures with insecticidal activity. The presence of species belonging to the genus Baccharis is of particular interest, as these species have shown promise in pest management applications. The objective of this study is to chemically identify the constituents expressed in the leaves of seven species of Baccharis (B. anomala DC., B. calvescens DC., B. mesoneura DC., B. milleflora DC., B. oblongifolia Pers., B. trimera (Less) DC. and B. uncinella DC.) and to evaluate the toxicological and morphological effects caused by essential oils (EOs) on the larvae and adults of Drosophila suzukii (Diptera: Drosophilidae). Chemical analysis using gas chromatography-mass spectrometry (GC-MS) indicated that limonene was the main common constituent in all Baccharis species. This constituent in isolation, as well as the EOs of B. calvescens, B. mesoneura, and B. oblongifolia, caused mortality in over 80% of adults of D. suzukii at a discriminatory concentration of 80 mg L-1 in bioassays of ingestion and topical application. These results are similar to the effect of spinosyn-based synthetic insecticides (spinetoram 75 mg L-1) 120 h after exposure. Limonene and EOs from all species had the lowest LC50 and LC90 values relative to spinosyn and azadirachtin (12 g L-1) in both bioassays. However, they showed the same time toxicity over time as spinetoram when applied to adults of D. suzukii (LT50 ranging from 4.6 to 8.7 h) in a topical application bioassay. In olfactometry tests, 92% of D. suzukii females showed repellent behavior when exposed to the EOs and limonene. Likewise, the EOs of B. calvescens, B. mesoneura, and B. oblongifolia significantly reduced the number of eggs in artificial fruits (≅ 7.6 eggs fruit-1), differing from the control treatment with water (17.2 eggs fruit-1) and acetone (17.6 eggs fruit-1). According to histological analyses, the L3 larvae of D. suzukii had morphological and physiological alterations and deformations after exposure to treatments containing EOs and limonene, which resulted in high larval, pupal, and adult mortality. In view of the results, Baccharis EOs and their isolated constituent, limonene, proved to be promising alternatives for developing bioinsecticides to manage of D. suzukii.


Assuntos
Baccharis/metabolismo , Drosophila/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Drosophila/metabolismo , Drosophila/fisiologia , Frutas/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Inseticidas/química , Larva/efeitos dos fármacos , Limoneno/farmacologia , Óleos Voláteis/farmacologia , Oviposição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Pupa/efeitos dos fármacos
18.
Nat Prod Res ; 35(5): 822-825, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30961365

RESUMO

As a medicinal plant, Artemisia annua is widely distributed in China. The purpose of this work was to analyze the chemical composition of essential oil from A. annua aerial portions, as well as to assess its repellent activity against Lasioderma serricorne and Tribolium castaneum adults. GC-FID and GC-MS analyses enabled the identification of 15 components representing 90.1% of the essential oil. The main components included artemisia ketone (70.6%), α-caryophyllene (5.1%) and germacrene D (3.8%). The essential oil was found to possess considerable ability to repel the two storage pests. This paper provided some evidence for the exploitation and utilization of A. annua resources as a natural repellent.


Assuntos
Artemisia annua/química , Besouros/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Controle Biológico de Vetores , Componentes Aéreos da Planta/química , Tribolium/efeitos dos fármacos , Animais , China , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/química , Inseticidas/química , Inseticidas/farmacologia , Monoterpenos/farmacologia
19.
J Chem Ecol ; 46(11-12): 1105-1116, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33089352

RESUMO

Western flower thrips (WFT), Frankliniella occidentalis, is a serious insect pest of Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)]. Here we have investigated whether genotypic variation in constitutive and inducible resistance to WFT correlates with phenotypic differences in leaf trichome density and the activity of the defense-related enzyme polyphenol oxidase (PPO) in chrysanthemum. Non-glandular and glandular leaf trichome densities significantly varied among ninety-five chrysanthemum cultivars. Additional analyses in a subset of these cultivars, differing in leaf trichome density, revealed significant variation in PPO activities and resistance to WFT as well. Constitutive levels of trichome densities and PPO activity, however, did not correlate with chrysanthemum resistance to WFT. Further tests showed that exogenous application of the phytohormone jasmonic acid (JA) increased non-glandular trichome densities, PPO activity and chrysanthemum resistance to WFT, and that these effects were cultivar dependent. In addition, no tradeoff between constitutive and inducible resistance to WFT was observed. JA-mediated induction of WFT resistance, however, did not correlate with changes in leaf trichome densities nor PPO activity levels. Taken together, our results suggest that chrysanthemum can display both high levels of constitutive and inducible resistance to WFT, and that leaf trichome density and PPO activity may not play a relevant role in chrysanthemum defenses against WFT.


Assuntos
Chrysanthemum/química , Chrysanthemum/parasitologia , Tisanópteros/efeitos dos fármacos , Tricomas/metabolismo , Animais , Catecol Oxidase/metabolismo , Ciclopentanos/química , Ciclopentanos/metabolismo , Genótipo , Interações Hospedeiro-Parasita , Controle de Insetos , Repelentes de Insetos/química , Repelentes de Insetos/metabolismo , Oxilipinas/química , Oxilipinas/metabolismo , Extratos Vegetais/análise , Reguladores de Crescimento de Plantas
20.
Trop Med Int Health ; 25(12): 1480-1485, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32945539

RESUMO

OBJECTIVE: To investigate what toxicological interactions occur when binary combinations of azamethiphos and botanical monoterpenes (eugenol, menthol or menthyl acetate) are applied to Triatoma infestans. METHODS: The toxicity of binary mixtures of azamethiphos and sublethal doses of a monoterpene (eugenol, menthol or menthyl acetate) was evaluated in nymphs of the first stage of T. infestans. Experiments using exposure to filter papers and topical application were carried out. Values of Lethal Concentration 50% (LC50) were calculated in the first case, and values of Lethal Dose 50% (LD50) in the second. RESULTS: The LC50 of azamethiphos applied on filter paper was 50.3 µg/cm2 . However, when it was simultaneously applied with a sublethal concentration of monoterpene, its toxicity increased (LC50 with eugenol = 11.20 µg/cm2 , LC50 with menthyl acetate = 5.30 µg/cm2 , LC50 with menthol = 7.26 µg/cm2 ). When applied topically, the LD50 of azamethiphos was 7.85 µg/insect, but its toxicity drastically increased when it was applied together with sublethal doses of menthol (LD50 = 0.00016 µg/insect) or menthyl acetate (LD50 = 0.00051 µg/insect). The simultaneous application with eugenol did not significantly change azamethiphos toxicity (LD50 = 12.79 µg/insect). CONCLUSIONS: The toxicity of azamethiphos in T. infestans was synergised when it was applied together with eugenol, menthol or menthyl acetate on a filter paper. However, only menthol and menthyl acetate synergysed azamethiphos when mixtures were topically applied. The drastic effects of menthol and menthyl acetate in topical application experiments should be further studied as they could be the basis for developing more efficient triatomicidal products with a lower content of conventional insecticides than those currently used for controlling T. infestans.


OBJECTIF: Etudier les interactions toxicologiques qui se produisent lorsque des combinaisons binaires d'azaméthiphos et de monoterpènes botaniques (eugénol, menthol ou acétate de menthyle) sont appliquées à Triatoma infestans. MÉTHODES: La toxicité de mélanges binaires d'azaméthiphos et de doses sublétales d'un monoterpène (eugénol, menthol ou acétate de menthyle) a été évaluée sur les nymphes du premier stade de T. infestans. Des expériences utilisant une exposition à des papiers filtres et une application topique ont été réalisées. Les valeurs de concentration létale à 50% (CL50) ont été calculées dans le premier cas et les valeurs de dose létale à 50% (DL50) dans le second. RÉSULTATS: La CL50 de l'azaméthiphos appliqué sur papier filtre était de 50,3 µg/cm2 . Cependant, lorsqu'il était appliqué simultanément avec une concentration sublétale de monoterpène, sa toxicité augmentait (CL50 avec eugénol = 11,20 µg/cm2 , CL50 avec acétate de menthyle = 5,30 µg/cm2 , CL50 avec menthol = 7,26 µg/cm2 ). Lorsqu'il était appliqué localement, la DL50 de l'azaméthiphos était de 7,85 µg/insecte, mais sa toxicité augmentait considérablement lorsqu'il était appliqué avec des doses sublétales de menthol (DL50 = 0,00016 µg/insecte) ou d' acétate de menthyle (DL50 = 0,00051 µg/insecte). L'application simultanée d'eugénol n'a pas modifié de manière significative la toxicité de l'azaméthiphos (DL50 = 12,79 µg/insecte). CONCLUSIONS: La toxicité de l'azaméthiphos chez T. infestans a été mise en synergie lorsqu'il a été appliqué avec de l'eugénol, du menthol ou de l' acétate de menthyle sur un papier filtre. Cependant, seuls le menthol et l' acétate de menthyle ont eu un effet synergique avec l'azaméthiphos lorsque les mélanges étaient appliqués localement. Les effets drastiques du menthol et de l' acétate de menthyle dans les expériences d'application topique devraient être plus étudiés car ils pourraient être la base du développement de produits triatomicides plus efficaces avec une teneur inférieure en insecticides conventionnels que ceux actuellement utilisés pour lutter contre T. infestans.


Assuntos
Repelentes de Insetos/farmacologia , Insetos Vetores/efeitos dos fármacos , Óleos de Plantas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Controle de Insetos/métodos , Repelentes de Insetos/química , Dose Letal Mediana , Monoterpenos/química , Monoterpenos/farmacologia , Ninfa/efeitos dos fármacos , Organotiofosfatos/farmacologia , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA