Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 151, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236339

RESUMO

BACKGROUND: Herbal products have been commonly used all over the world for centuries. Its products have gained remarkable acceptance as therapeutic agents for a variety of disorders. However, following recent research disclosing discrepancies between labeling and actual components of herbal products, there is growing concern about the efficacy, quality and safety of the products. The admixture and adulteration of herbal medicinal products pose a risk of serious health compromise and the well-being of the consumers. To prevent adulteration in raw ingredients and final herbal products, it is necessary to use approaches to assess both genomes as well as metabolomics of the products; this offers quality assurance in terms of product identification and purity. The combinations of molecular and analytical methods are inevitable for thorough verification and quality control of herbal medicine. METHODS AND RESULTS: This review discusses the combination of DNA barcoding, DNA metabarcoding, mass spectroscopy as well as HPLC for the authentication of herbal medicine and determination of the level of adulteration. It also discusses the roles of PCR and real-time PCR techniques in validating and ensuring the quality, purity and identity of the herbal products. CONCLUSIONS: In conclusion, each technique has its own pros and cons, but the cumulative of both the chemical and molecular methods is proven to be the best strategy for adulteration detection. Moreover, CRISPR diagnosis tools equipped with multiplexing techniques may be implemented for screening adulteration from herbal drugs, this will play a crucial role in herbal product authentication in the future.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metabolômica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Extratos Vegetais
2.
Bioresour Technol ; 387: 129599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532061

RESUMO

Chlorella sorokiniana (CS) is a prominent microalga with vast potential as a biocarrier for carbon mitigation toward a green process. However, challenges remain in achieving high biomass levels and production rates. Therefore, a systematic feeding strategy using 4-aminobutyric acid (GABA) and CRISPR technology was applied to improve microalgal productivity. At first, GABA increased protein content by 1.4-fold, while intermittent supplementation during cultivation resulted in a 1.58-fold and 2.13-fold increase in biomass and pigment content, respectively. Under halophilic conditions, the optimal approach involved repeated feeding of 5 mM GABA at the initial and mid-log phases of growth, resulting in biomass, protein, and pigment levels of 6.74 g/L, 3.24 g/L, and 49.87 mg/L. CRISPRa mediated glutamate synthase and using monosodium glutamate (MSG) as a cheap precursor for GABA has effectively enhanced the biomass, protein, and lutein content, thus offers a cost-effective approach to commercialize high-valued chemical using algae towards a low-carbon paradigm.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Microalgas/genética , Microalgas/metabolismo , Biomassa , Luteína
3.
Oncotarget ; 13: 1078-1091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187556

RESUMO

PARP10 is a mono-ADP-ribosyltransferase with multiple cellular functions, including proliferation, apoptosis, metabolism and DNA repair. PARP10 is overexpressed in a significant proportion of tumors, particularly breast and ovarian cancers. Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology. Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival. We found that PARP10-overexpressing cells rely on multiple DNA repair genes for survival, including ATM, the master regulator of the DNA damage checkpoint. Moreover, we show that PARP10 impacts the recruitment of ATM to nascent DNA upon replication stress. Finally, we identify the CDK2-Cyclin E1 complex as essential for proliferation of PARP10-knockout cells. Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.


Assuntos
Neoplasias , Poli(ADP-Ribose) Polimerases , ADP Ribose Transferases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , Humanos , Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética
5.
Nucleic Acids Res ; 50(7): 4161-4170, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35349689

RESUMO

CRISPR base editing techniques tend to edit multiple bases in the targeted region, which is a limitation for precisely reverting disease-associated single-nucleotide polymorphisms (SNPs). We designed an imperfect gRNA (igRNA) editing methodology, which utilized a gRNA with one or more bases that were not complementary to the target locus to direct base editing toward the generation of a single-base edited product. Base editing experiments illustrated that igRNA editing with CBEs greatly increased the single-base editing fraction relative to normal gRNA editing with increased editing efficiencies. Similar results were obtained with an adenine base editor (ABE). At loci such as DNMT3B, NSD1, PSMB2, VIATA hs267 and ANO5, near-perfect single-base editing was achieved. Normally an igRNA with good single-base editing efficiency could be selected from a set of a few igRNAs, with a simple protocol. As a proof-of-concept, igRNAs were used in the research to construct cell lines of disease-associated SNP causing primary hyperoxaluria construction research. This work provides a simple strategy to achieve single-base base editing with both ABEs and CBEs and overcomes a key obstacle that limits the use of base editors in treating SNP-associated diseases or creating disease-associated SNP-harboring cell lines and animal models.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Adenina/metabolismo , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética
6.
mBio ; 13(1): e0368321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038923

RESUMO

Macrophages are a protective replicative niche for Mycobacterium tuberculosis (Mtb) but can kill the infecting bacterium when appropriately activated. To identify mechanisms of clearance, we compared levels of bacterial restriction by human macrophages after treatment with 26 compounds, including some currently in clinical trials for tuberculosis. All-trans-retinoic acid (ATRA), an active metabolite of vitamin A, drove the greatest increase in Mtb control. Bacterial clearance was transcriptionally and functionally associated with changes in macrophage cholesterol trafficking and lipid metabolism. To determine how these macrophage changes affected bacterial control, we performed the first Mtb CRISPR interference screen in an infection model, identifying Mtb genes specifically required to survive in ATRA-activated macrophages. These data showed that ATRA treatment starves Mtb of cholesterol and the downstream metabolite propionyl coenzyme A (propionyl-CoA). Supplementation with sources of propionyl-CoA, including cholesterol, abrogated the restrictive effect of ATRA. This work demonstrates that targeting the coupled metabolism of Mtb and the macrophage improves control of infection and that it is possible to genetically map the mode of bacterial death using CRISPR interference. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a leading cause of death due to infectious disease. Improving the immune response to tuberculosis holds promise for fighting the disease but is limited by our lack of knowledge as to how the immune system kills M. tuberculosis. Our research identifies a potent way to make relevant immune cells more effective at fighting M. tuberculosis and then uses paired human and bacterial genomic methods to determine the mechanism of that improved bacterial clearance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Macrófagos/microbiologia , Tuberculose/microbiologia , Acil Coenzima A/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Colesterol/metabolismo
7.
Adv Drug Deliv Rev ; 181: 114041, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763002

RESUMO

RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , RNA/administração & dosagem , Transfecção/métodos , Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Avaliação Pré-Clínica de Medicamentos , Humanos , MicroRNAs/administração & dosagem , Oligonucleotídeos/administração & dosagem , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi
8.
Trends Genet ; 38(3): 218-221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702578

RESUMO

Implementations and improvements of genome editing techniques used in plant science have increased exponentially. For some crops, such as potato, the use of transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) has moved to the next step of trait development and field trials, and should soon be applied to commercial cultivation.


Assuntos
Edição de Genes , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Solanum tuberosum/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
9.
J Crohns Colitis ; 16(1): 109-121, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180971

RESUMO

BACKGROUND AND AIMS: Ulcerative colitis [UC] is a chronic inflammatory disease of the colon with frequent relapses. Telomere shortening in intestinal epithelial cells has been reported in severe or longstanding cases. However, its influence on UC pathogenesis remains unelucidated. To this end, we evaluated telomere shortening using a long-term organoid inflammation model that we had originally established. METHODS: A UC model using human colon organoids was established to assess telomere changes chronologically. MST-312 was used for the telomerase inhibition assay. The potential of telomerase activators as a novel UC treatment was evaluated with an in vitro model, including microarray analysis, and histological changes were assessed using xenotransplantation into mouse colonic mucosa. RESULTS: Our UC model reproduced telomere shortening in vitro, which was induced by the continuous suppression of telomerase activity via P53. MST-312-based analysis revealed that telomere shortening was involved in the pathogenesis of UC. Madecassoside [MD] improved the telomere length of the UC model and UC patient-derived organoids, which further promoted cell proliferation in vitro and improved the graft take-rate of xenotransplantation. Moreover, histological analysis revealed that MD induced normal crypt structure with abundant goblet cells. CONCLUSIONS: This study is the first to reveal the mechanism and importance of telomere shortening in the pathogenesis of UC. MD could be a novel candidate for UC treatment beyond endoscopic mucosal healing.


Assuntos
Colite Ulcerativa/patologia , Células Epiteliais/patologia , Mucosa Intestinal/citologia , Encurtamento do Telômero , Animais , Biópsia , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colonoscopia , Humanos , Camundongos , Organoides/metabolismo , Organoides/patologia , Organoides/transplante , Espécies Reativas de Oxigênio/metabolismo , Telomerase/metabolismo , Transplante Heterólogo
10.
Environ Sci Technol ; 55(17): 11997-12008, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378391

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) with extracellular electron transfer (EET) capability show great potential in bioremediating the subsurface environments contaminated by uranium through bioreduction and precipitation of hexavalent uranium [U(VI)]. However, the low EET efficiency of DMRB remains a bottleneck for their applications. Herein, we develop an engineered CRISPR platform to drive the extracellular electron pumping of Shewanella oneidensis, a representative DMRB species widely present in aquatic environments. The CRISPR platform allows for highly efficient and multiplex genome editing and rapid platform elimination post-editing in S. oneidensis. Enabled by such a platform, a genomic promoter engineering strategy (GPS) for genome-widely engineering the EET-encoding gene network was established. The production of electron conductive Mtr complex, synthesis of electron shuttle flavin, and generation of NADH as intracellular electron carrier are globally optimized and promoted, leading to a significantly enhanced EET ability. Applied to U(VI) bioreduction, the edited strains achieve up to 3.62-fold higher reduction capacity over the control. Our work endows DMRB with an enhanced ability to remediate the radionuclides-contaminated environments and provides a gene editing approach to handle the growing environmental challenges of radionuclide contaminations.


Assuntos
Shewanella , Urânio , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transporte de Elétrons , Elétrons , Shewanella/genética
11.
Trends Genet ; 37(9): 776-779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34016451

RESUMO

Next-generation sequencing (NGS) has identified disease hallmarks and catalogued a vast reservoir of genetic information from humans and other species. Precise nucleotide-interrogation properties of clustered regularly interspaced short palindromic repeats (CRISPR) proteins have been harnessed to rapidly identify DNA-RNA signatures for diverse applications, bypassing the cost and turnaround times associated with diagnostic NGS.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas Genéticas , Técnicas de Diagnóstico Molecular/métodos , Biomarcadores Tumorais/genética , Proteínas Associadas a CRISPR/genética , DNA , Técnicas Genéticas/economia , Humanos , Plantas Medicinais/genética , RNA , Tuberculose/diagnóstico , Tuberculose/microbiologia
12.
Nat Commun ; 12(1): 3055, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031411

RESUMO

Triple negative breast cancer (TNBC) patients exhibit poor survival outcomes and lack effective targeted therapies. Using unbiased in vivo genome-wide CRISPR screening, we interrogated cancer vulnerabilities in TNBC and identified an interplay between oncogenic and tumor suppressor pathways. This study reveals tumor regulatory functions for essential components of the mTOR and Hippo pathways in TNBC. Using in vitro drug matrix synergy models and in vivo patient-derived xenografts, we further establish the therapeutic relevance of our findings and show that pharmacological inhibition of mTORC1/2 and oncoprotein YAP efficiently reduces tumorigenesis in TNBC. At the molecular level, we find that while verteporfin-induced YAP inhibition leads to apoptosis, torin1-mediated mTORC1/2 inhibition promotes macropinocytosis. Torin1-induced macropinocytosis further facilitates verteporfin uptake, thereby greatly enhancing its pro-apoptotic effects in cancer cells. Overall, our study underscores the power and robustness of in vivo CRISPR genome-wide screens in identifying clinically relevant and innovative therapeutic modalities in cancer.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Terapia Combinada/métodos , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Sistemas CRISPR-Cas , Carcinogênese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HEK293 , Via de Sinalização Hippo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Verteporfina , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Med Ethics ; 22(1): 48, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902573

RESUMO

BACKGROUND: CRISPR-Cas9, a technology enabling modification of the human genome, is developing rapidly. There have been calls for public debate to discuss its ethics, societal implications, and governance. So far, however, little is known about public attitudes on CRISPR-Cas9. This study contributes to a better understanding of public perspectives by exploring the various holistic perspectives Dutch citizens have on CRISPR-Cas9. METHODS: This study used Q methodology to identify different perspectives of Dutch citizens (N = 30) on the use of CRISPR-Cas9. The Q-sort method aims at segmenting audiences based on the structural characteristics of their perspectives. Participants individually ranked 32 statements about CRISPR-Cas9 and discussed their rankings in small groups. By-person factor analysis was performed using PQMethod. Participants' contributions to the discussions were used to further make sense of the audience segments identified. RESULTS: Five perspectives on CRISPR-Cas9 were identified: (1) pragmatic optimism (2) concerned scepticism; (3) normative optimism; (4) enthusiastic support; and (5) benevolent generalism. Each perspective represents a unique position motivated by different ranking rationales. Sorting rationales included improving health, preventing negative impacts on society, and fear of a slippery slope. Overall, there is broad, but not universal support for medical uses of CRISPR-Cas9. CONCLUSIONS: Research on CRISPR-Cas9 should prioritise the broadly supported applications of the technology. Research and public debates on CRISPR-Cas9, its uses, its broader implications, and the governance of CRISPR-Cas9 are recommended. A discourse that includes all perspectives can contribute to the embedding of future uses of CRISPR-Cas9 in society. This study shows that Q methodology followed by group discussions enables citizens to contribute meaningfully to discourses about research.


Assuntos
Pesquisa Biomédica/ética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/ética , Melhoramento Genético/ética , Opinião Pública , Genoma Humano , Humanos , Países Baixos
14.
Adv Drug Deliv Rev ; 168: 99-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931860

RESUMO

Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Proteínas Associadas a CRISPR/administração & dosagem , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dendrímeros/química , Endodesoxirribonucleases/administração & dosagem , Ouro/química , Integrases/administração & dosagem , Lipídeos/química , Nanopartículas/química , Fósforo/química , Polietilenoimina/química , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/administração & dosagem , Nucleases de Dedos de Zinco/administração & dosagem
15.
J Integr Plant Biol ; 63(4): 676-694, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32918784

RESUMO

Gametophyte development is a pre-requisite for plant reproduction and seed yield; therefore, studies of gametophyte development help us understand fundamental biological questions and have potential applications in agriculture. The biogenesis and dynamics of endomembrane compartments are critical for cell survival, and their regulatory mechanisms are just beginning to be revealed. Here, we report that the Arabidopsis thaliana SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) protein YKT61 is essential for both male and female gametogenesis. By using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based genome editing, we demonstrated that male and female gametophytes carrying YKT61 loss-of-function alleles do not survive. Specifically, loss of YKT61 function resulted in the arrest of male gametophytic development at pollen mitosis I and the degeneration of female gametophytes. A three-base-pair deletion in YKT61 in the ykt61-3 mutant resulted in a single-amino acid deletion in the longin domain of YKT61; the resulting mutant protein does not interact with multiple SNAREs and showed substantially reduced membrane association, suggesting that the N-terminal longin domain of YKT61 plays multiple roles in its function. This study demonstrates that Arabidopsis YKT61 is essential for male and female gametogenesis and sets an example for functional characterization of essential genes with the combination of Cas9-mediated editing and expression from a Cas9-resistant transgene.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pólen/metabolismo , Proteínas R-SNARE/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pólen/genética , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas R-SNARE/genética
16.
J Hum Genet ; 66(3): 287-296, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32994538

RESUMO

Ancient DNA studies provide genomic information about the origins, population structures, and physical characteristics of ancient humans that cannot be solely examined by archeological studies. The DNAs extracted from ancient human bones, teeth, or tissues are often contaminated with coexisting bacterial and viral genomes that contain DNA from ancient microbes infecting those of ancient humans. Information on ancient viral genomes is useful in making inferences about the viral evolution. Here, we have utilized metagenomic sequencing data from the dental pulp of five Jomon individuals, who lived on the Japanese archipelago more than 3000 years ago; this is to detect ancient viral genomes. We conducted de novo assembly of the non-human reads where we have obtained 277,387 contigs that were longer than 1000 bp. These contigs were subjected to homology searches against a collection of modern viral genome sequences. We were able to detect eleven putative ancient viral genomes. Among them, we reconstructed the complete sequence of the Siphovirus contig89 (CT89) viral genome. The Jomon CT89-like sequence was determined to contain 59 open reading frames, among which five genes known to encode phage proteins were under strong purifying selection. The host of CT89 was predicted to be Schaalia meyeri, a bacterium residing in the human oral cavity. Finally, the CT89 phylogenetic tree showed two clusters, from both of which the Jomon sequence was separated. Our results suggest that metagenomic information from the dental pulp of the Jomon people is essential in retrieving ancient viral genomes used to examine their evolution.


Assuntos
Povo Asiático , DNA Viral/isolamento & purificação , Polpa Dentária/virologia , Etnicidade , Fósseis/virologia , Genoma Viral , Metagenoma , Siphoviridae/isolamento & purificação , Actinomycetaceae/virologia , Povo Asiático/história , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mapeamento de Sequências Contíguas , Polpa Dentária/química , Etnicidade/história , Feminino , Fósseis/história , Fósseis/microbiologia , História Antiga , Humanos , Japão , Funções Verossimilhança , Masculino , Anotação de Sequência Molecular , Boca/microbiologia , Boca/virologia , Fases de Leitura Aberta/genética , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Siphoviridae/genética , Sequenciamento Completo do Genoma
17.
Plant J ; 104(4): 880-891, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860436

RESUMO

Plant genetic engineering, a recent technological advancement in the field of plant science, is an important tool used to improve crop quality and yield, to enhance secondary metabolite content in medicinal plants or to develop crops for sustainable agriculture. A new approach based on nanoparticle-mediated gene transformation can overcome the obstacle of the plant cell wall and accurately transfer DNA or RNA into plants to produce transient or stable transformation. In this review, several nanoparticle-based approaches are discussed, taking into account recent advances and challenges to hint at potential applications of these approaches in transgenic plant improvement programs. This review also highlights challenges in implementing the nanoparticle-based approaches used in plant genetic engineering. A new technology that improves gene transformation efficiency and overcomes difficulties in plant regeneration has been established and will be used for the de novo production of transgenic plants, and CRISPR/Cas9 genome editing has accelerated crop improvement. Therefore, we outline future perspectives based on combinations of genome editing, nanoparticle-mediated gene transformation and de novo regeneration technologies to accelerate crop improvement. The information provided here will assist an effective exploration of the technological advances in plant genetic engineering to support plant breeding and important crop improvement programs.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas , Engenharia Genética , Nanopartículas , Plantas/genética , Agricultura , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Transformação Genética
18.
PLoS One ; 15(8): e0235942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804931

RESUMO

Genome editing is now widely used in plant science for both basic research and molecular crop breeding. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, through its precision, high efficiency and versatility, allows for editing of many sites in plant genomes. This system has been highly successful to produce knock-out mutants through the introduction of frameshift mutations due to error-prone repair pathways. Nevertheless, recent new CRISPR-based technologies such as base editing and prime editing can generate precise and on demand nucleotide conversion, allowing for fine-tuning of protein function and generating gain-of-function mutants. However, genome editing through CRISPR systems still have some drawbacks and limitations, such as the PAM restriction and the need for more diversity in CRISPR tools to mediate different simultaneous catalytic activities. In this study, we successfully used the CRISPR-Cas9 system from Staphylococcus aureus (SaCas9) for the introduction of frameshift mutations in the tetraploid genome of the cultivated potato (Solanum tuberosum). We also developed a S. aureus-cytosine base editor that mediate nucleotide conversions, allowing for precise modification of specific residues or regulatory elements in potato. Our proof-of-concept in potato expand the plant dicot CRISPR toolbox for biotechnology and precision breeding applications.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutação INDEL , Solanum tuberosum/genética , Staphylococcus aureus/enzimologia , Sistemas CRISPR-Cas , Mutação da Fase de Leitura , Edição de Genes/métodos , Genoma de Planta , Plasmídeos/genética , Staphylococcus aureus/genética
19.
Cancer Discov ; 10(12): 1894-1911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32826232

RESUMO

Deciphering the impact of metabolic intervention on response to anticancer therapy may elucidate a path toward improved clinical responses. Here, we identify amino acid-related pathways connected to the folate cycle whose activation predicts sensitivity to MYC-targeting therapies in acute myeloid leukemia (AML). We establish that folate restriction and deficiency of the rate-limiting folate cycle enzyme MTHFR, which exhibits reduced-function polymorphisms in about 10% of Caucasians, induce resistance to MYC targeting by BET and CDK7 inhibitors in cell lines, primary patient samples, and syngeneic mouse models of AML. Furthermore, this effect is abrogated by supplementation with the MTHFR enzymatic product CH3-THF. Mechanistically, folate cycle disturbance reduces H3K27/K9 histone methylation and activates a SPI1 transcriptional program counteracting the effect of BET inhibition. Our data provide a rationale for screening MTHFR polymorphisms and folate cycle status to nominate patients most likely to benefit from MYC-targeting therapies. SIGNIFICANCE: Although MYC-targeting therapies represent a promising strategy for cancer treatment, evidence of predictors of sensitivity to these agents is limited. We pinpoint that folate cycle disturbance and frequent polymorphisms associated with reduced MTHFR activity promote resistance to BET inhibitors. CH3-THF supplementation thus represents a low-risk intervention to enhance their effects.See related commentary by Marando and Huntly, p. 1791.This article is highlighted in the In This Issue feature, p. 1775.


Assuntos
Ácido Fólico/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/biossíntese , Células U937
20.
Nat Commun ; 11(1): 4077, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796846

RESUMO

Double-strand breaks (DSBs) are the most toxic type of DNA lesions. Cells repair these lesions using either end protection- or end resection-coupled mechanisms. To study DSB repair choice, we present the Color Assay Tracing-Repair (CAT-R) to simultaneously quantify DSB repair via end protection and end resection pathways. CAT-R introduces DSBs using CRISPR/Cas9 in a tandem fluorescent reporter, whose repair distinguishes small insertions/deletions from large deletions. We demonstrate CAT-R applications in chemical and genetic screens. First, we evaluate 21 compounds currently in clinical trials which target the DNA damage response. Second, we examine how 417 factors involved in DNA damage response influence the choice between end protection and end resection. Finally, we show that impairing nucleotide excision repair favors error-free repair, providing an alternative way for improving CRISPR/Cas9-based knock-ins. CAT-R is a high-throughput, versatile assay to assess DSB repair choice, which facilitates comprehensive studies of DNA repair and drug efficiency testing.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular , Sobrevivência Celular , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Poli(ADP-Ribose) Polimerase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA