Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Mitofagia , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Mitofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Comprimidos , Linhagem Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
J Physiol Biochem ; 80(2): 421-437, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502466

RESUMO

The endoplasmic reticulum (ER) is determinant to maintain cellular proteostasis. Upon unresolved ER stress, this organelle activates the unfolded protein response (UPR). Sustained UPR activates is known to occur in inflammatory processes, deeming the ER a potential molecular target for the treatment of inflammation. This work characterizes the inflammatory/UPR-related molecular machinery modulated by an in-house library of natural products, aiming to pave the way for the development of new selective drugs that act upon the ER to counter inflammation-related chronic diseases. Starting from a library of 134 compounds of natural occurrence, mostly occurring in medicinal plants, nontoxic molecules were screened for their inhibitory capacity against LPS-induced nuclear factor kappa B (NF-κB) activation in a luciferase-based reporter gene assay. Since several natural products inhibited NF-κB expression in THP-1 macrophages, their effect on reactive oxygen species (ROS) production and inflammasome activation was assessed, as well as their transcriptional outcome regarding ER stress. The bioactivities of several natural products are described herein for the first time. We report the anti-inflammatory potential of guaiazulene and describe 5-deoxykaempferol as a novel inhibitor of inflammasome activation. Furthermore, we describe the dual potential of 5-deoxykaempferol, berberine, guaiazulene, luteolin-4'-O-glucoside, myricetin, quercetagetin and sennoside B to modulate inflammatory signaling ER stress. Our results show that natural products are promising molecules for the discovery and pharmaceutical development of chemical entities able to modulate the inflammatory response, as well as proteostasis and the UPR.


Assuntos
Estresse do Retículo Endoplasmático , NF-kappa B , Espécies Reativas de Oxigênio , Transdução de Sinais , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamação/metabolismo , Produtos Biológicos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células THP-1 , Bibliotecas de Moléculas Pequenas/farmacologia , Lipopolissacarídeos/farmacologia
3.
Oxid Med Cell Longev ; 2022: 8878923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237385

RESUMO

Age is the major risk factor for most of the deadliest diseases. Developing small molecule drugs with antiaging effects could improve the health of aged people and retard the onset and progress of aging-associated disorders. Bioactive secondary metabolites from medicinal plants are the main source for development of medication. Orientin is a water-soluble flavonoid monomer compound widely found in many medicinal plants. Orientin inhibits fat production, antioxidation, and anti-inflammatory activities. In this study, we explored whether orientin could affect the aging of C. elegans. We found that orientin improved heat, oxidative, and pathogenic stress resistances through activating stress responses, including HSF-1-mediated heat shock response, SKN-1-mediated xenobiotic and oxidation response, mitochondria unfolded responses, endoplasmic unfolded protein response, and increased autophagy activity. Orientin also could activate key regulators of the nutrient sensing pathway, including AMPK and insulin downstream transcription factor FOXO/DAF-16 to further improve the cellular health status. The above effects of orientin reduced the accumulation of toxic proteins (α-synuclein, ß-amyloid, and poly-Q) and delayed the onset of neurodegenerative disorders in AD, PD, and HD models of C. elegans and finally increased the longevity and health span of C. elegans. Our results suggest that orientin has promising antiaging effects and could be a potential natural source for developing novel therapeutic drugs for aging and its related diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Flavonoides/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Glucosídeos/farmacologia , Longevidade/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais/química , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216090

RESUMO

Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.


Assuntos
Cafeína/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipertermia Induzida/efeitos adversos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Feminino , Humanos , Drogas Ilícitas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Resposta a Proteínas não Dobradas/efeitos dos fármacos
5.
FASEB J ; 36(2): e22156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044707

RESUMO

Lycium barbarum, a traditional Chinese medicine, has been shown to have antioxidant properties and has a protective effect in many diseases related to oxidative stress, such as neurodegenerative diseases, cardiovascular diseases, and cancer. Although the neuroprotective effects of L. barbarum extract (LBE) have been reported in several studies, the underlying molecular mechanisms are still unclear. In this study, the transgenic Caenorhabditis elegans strain CL2006 was used to investigate the function and molecular mechanism of an LBE in Alzheimer's disease (AD). LBE had high antioxidant potential and effectively delayed Aß-induced paralysis in the CL2006 strain. LBE inhibited the production of excessive reactive oxygen species by inducing the SKN-1-mediated antioxidant system, thereby inhibiting the generation of Aß and inhibiting mitochondrial damage. Importantly, LBE reduced Aß levels by inducing FSHR-1-mediated activation of the mtUPR. Therefore, our study not only reveals a new mechanism of LBE in the treatment of AD but also identifies a novel strategy for the treatment of AD by enhancing the mtUPR.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Lycium/química , Extratos Vegetais/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Medicina Tradicional Chinesa/métodos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Death Dis ; 12(11): 1038, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725321

RESUMO

Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Quimiocina CCL20/metabolismo , Estresse do Retículo Endoplasmático , Imunomodulação , Interleucina-8/metabolismo , Transdução de Sinais , eIF-2 Quinase/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Linhagem Celular Tumoral , Quimiocina CCL20/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-8/genética , Janus Quinases/metabolismo , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
7.
Clin Sci (Lond) ; 135(23): 2643-2658, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34796904

RESUMO

Acute kidney injury (AKI)-related fibrosis is emerging as a major driver of chronic kidney disease (CKD) development. Aberrant kidney recovery after AKI is multifactorial and still poorly understood. The accumulation of indoxyl sulfate (IS), a protein-bound uremic toxin, has been identified as a detrimental factor of renal fibrosis. However, the mechanisms underlying IS-related aberrant kidney recovery after AKI is still unknown. The present study aims to elucidate the effects of IS on tubular damage and its involvement in the pathogenesis of AKI-to-CKD transition. Our results showed that serum IS started to accumulate associated with the downregulation of tubular organic anion transporter but not observed in the small-molecule uremic toxins of the unilateral ischemia-reperfusion injury (UIRI) without a contralateral nephrectomy model. Serum IS is positively correlated with renal fibrosis and binding immunoglobulin protein (BiP) and CAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression induction in the UIRI with a contralateral nephrectomy model (UIRI+Nx). To evaluate the effects of IS in the AKI-to-CKD transition, we administered indole, a precursor of IS, at the early stage of UIRI. Our results demonstrated IS potentiates renal fibrosis, senescence-associated secretory phenotype (SASP), and activation of endoplasmic reticulum (ER) stress, which is attenuated by synergistic AST-120 administration. Furthermore, we clearly demonstrated that IS exposure potentiated hypoxia-reperfusion (H/R) induced G2/M cell cycle arrest, epithelial-mesenchymal transition (EMT) and aggravated ER stress induction in vitro. Finally, the ER chemical chaperon, 4-phenylbutyric acid (4-PBA), successfully reversed the above-mentioned AKI-to-CKD transition. Taken together, early IS elimination in the early stage of AKI is likely to be a useful strategy in the prevention and/or treatment of the AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda/sangue , Carbono/uso terapêutico , Indicã/antagonistas & inibidores , Nefroesclerose/prevenção & controle , Óxidos/uso terapêutico , Insuficiência Renal Crônica/prevenção & controle , Injúria Renal Aguda/complicações , Animais , Butilaminas , Carbono/farmacologia , Avaliação Pré-Clínica de Medicamentos , Indicã/sangue , Indicã/isolamento & purificação , Camundongos Endogâmicos C57BL , Nefroesclerose/sangue , Nefroesclerose/etiologia , Óxidos/farmacologia , Insuficiência Renal Crônica/etiologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/etiologia , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
Cancer Lett ; 518: 82-93, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153400

RESUMO

Despite HER2-targeted cancer treatments have provided considerable clinical benefits, resistance to HER2-targeted agents will inevitably develop. Targeting non-oncogene vulnerabilities including endoplasmic reticulum (EnR) stress has emerged as an attractive alternative approach to improve the efficacy of existing targeted cancer therapies. In the current study, we find that Melatonin sensitizes HER2-positive breast cancer cells to the dual tyrosine kinase inhibitor Lapatinib in vitro. Mechanistically, Melatonin enhances the cytotoxic effects of Lapatinib through promoting excessive EnR stress-induced unfolded protein response (UPR) and ROS overaccumulation. Consistently, the antioxidant N-acetylcysteine remarkably reverses the effects of the drug combination on ROS production, DNA damage and cytotoxicity. Furthermore, Melatonin significantly enhances the anti-tumor effect of Lapatinib in an HCC1954 xenograft model. Meanwhile, Lapatinib resistant HER2-positive breast cancer cells (LapR) display lower basal expression levels of UPR genes and enhanced tolerance to EnR stress with attenuated response to Brefeldin A and Tunicamycin. Importantly, Melatonin also increases the sensitivity of HCC1954 LapR cells to Lapatinib. Together, our findings highlight the potential utility of Melatonin as an adjuvant in the treatment of primary or therapy resistant HER2-positive breast cancer via EnR stress-mediated mechanisms.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lapatinib/farmacologia , Melatonina/farmacologia , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
9.
Nat Metab ; 3(5): 682-700, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031592

RESUMO

It is known that ß cell proliferation expands the ß cell mass during development and under certain hyperglycemic conditions in the adult, a process that may be used for ß cell regeneration in diabetes. Here, through a new high-throughput screen using a luminescence ubiquitination-based cell cycle indicator (LUCCI) in zebrafish, we identify HG-9-91-01 as a driver of proliferation and confirm this effect in mouse and human ß cells. HG-9-91-01 is an inhibitor of salt-inducible kinases (SIKs), and overexpression of Sik1 specifically in ß cells blocks the effect of HG-9-91-01 on ß cell proliferation. Single-cell transcriptomic analyses of mouse ß cells demonstrate that HG-9-91-01 induces a wave of activating transcription factor (ATF)6-dependent unfolded protein response (UPR) before cell cycle entry. Importantly, the UPR wave is not associated with an increase in insulin expression. Additional mechanistic studies indicate that HG-9-91-01 induces multiple signalling effectors downstream of SIK inhibition, including CRTC1, CRTC2, ATF6, IRE1 and mTOR, which integrate to collectively drive ß cell proliferation.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Análise de Célula Única , Peixe-Zebra
10.
Sci Rep ; 11(1): 9528, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947921

RESUMO

The unfolded protein response (UPR) controls protein homeostasis through transcriptional and translational regulation. However, dysregulated UPR signaling has been associated with the pathogenesis of many human diseases. Therefore, the compounds modulating UPR may provide molecular insights for these pathologies in the context of UPR. Here, we screened small-molecule compounds that suppress UPR, using a library of Myanmar wild plant extracts. The screening system to track X-box binding protein 1 (XBP1) splicing activity revealed that the ethanol extract of the Periploca calophylla stem inhibited the inositol-requiring enzyme 1 (IRE1)-XBP1 pathway. We isolated and identified periplocin as a potent inhibitor of the IRE1-XBP1 axis. Periplocin also suppressed other UPR axes, protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Examining the structure-activity relationship of periplocin revealed that cardiac glycosides also inhibited UPR. Moreover, periplocin suppressed the constitutive activation of XBP1 and exerted cytotoxic effects in the human multiple myeloma cell lines, AMO1 and RPMI8226. These results reveal a novel suppressive effect of periplocin or the other cardiac glycosides on UPR regulation, suggesting that these compounds will contribute to our understanding of the pathological or physiological importance of UPR.


Assuntos
Glicosídeos Cardíacos/farmacologia , Saponinas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Periploca/química , Extratos Vegetais/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo
11.
Ecotoxicol Environ Saf ; 219: 112299, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993089

RESUMO

Heat stress due to global warming exerts deleterious effects on both humans and animals. However, nutritional strategies to reduce heat stress-induced intestinal mucosal barrier dysfunction and the underlying mechanisms remain largely unknown. In the present study, 240 tilapia were distributed into four treatment groups that were fed a basal diet supplemented with or without 0.1% Yucca schidigera extract under normal (28 °C) temperature or heat stress (36 °C) conditions for 2 weeks. Our results showed that tilapia exposed to heat stress resulted in growth arrest, intestinal dysfunction, oxidative damage, endoplasmic reticulum stress, and pro-inflammatory response, which were significantly relieved by yucca supplementation. The alleviative effect of Yucca schidigera extract was related to the down-regulation of mRNA expression of ubiquitin-proteasome system (Polyubiquitin, Proteasome 26S, Proteasome α5, Proteasome ß3, and Ubiquitin-like 3) and inflammatory factors (tumor necrosis factor α, interleukin 1ß, and interleukin 8), as well as the improved histological structure and activation of Hsp70, nuclear factor erythroid 2-related factor 2 signaling, interleukin 10, lysozyme, complement 3, and acid phosphatase in the intestine of tilapia. Collectively, these results indicated that heat stress-induced growth arrest, intestinal dysfunction, and oxidative damage were alleviated by dietary supplementation with Yucca schidigera extract. This offers a nutritional way of improving the growth and intestinal health of tilapia exposed to a hot environment.


Assuntos
Ciclídeos/fisiologia , Suplementos Nutricionais , Estresse Oxidativo/fisiologia , Extratos Vegetais/farmacologia , Yucca , Ração Animal/análise , Animais , Ciclídeos/metabolismo , Dieta , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Bioorg Med Chem ; 37: 116112, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33751939

RESUMO

Natural compounds isolated from different medicinal plants remain one of the major resources of anticancer drugs due to their enormous chemical diversity. Studies suggested therapeutic potential for various tanshinones, key bioactive lipophilic compounds from the root extracts of Salvia miltiorrhiza Bunge, against multiple cancers including breast carcinoma. We designed, synthesized and evaluated anti-cancer properties of a series of condensed and doubly condensed furophenanthraquinones of tanshinone derivatives on two breast cancer lines - MCF7 and MDA-MB-231. We identified two thiophene analogues - compounds 48 and 52 with greater anti-proliferative efficiency (~4 fold) as compared to the natural tanshinones. Mechanistically, we showed that both compounds induced autophagy mediated cell death and partial but significant restoration of cell death in the presence of autophagy inhibitor further supported this notion. Both compounds transcriptionally activated several autophagy genes responsible for autophagosome formation along with two death regulators - GADD34 and CHOP for inducing cell death. Altogether, our studies provide strong evidence to support compounds 48 and 52 as promising leads for further development as anticancer agents through modulating autophagy mechanism.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Tiofenos/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tiofenos/síntese química , Resposta a Proteínas não Dobradas/efeitos dos fármacos
13.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374919

RESUMO

A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found to be a potent cytotoxin that induces apoptosis by inhibiting the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump, which is necessary for cellular viability. This biological activity encouraged studies on the use of thapsigargin as a novel antineoplastic agent, which were, however, hampered due to high toxicity of this compound to normal cells. In this review, we summarized the recent knowledge on the biological activity and molecular mechanisms of thapsigargin action and advances in the synthesis of less-toxic thapsigargin derivatives that are being developed as novel anticancer drugs.


Assuntos
Antineoplásicos/uso terapêutico , Medicina Tradicional/métodos , Neoplasias/tratamento farmacológico , Thapsia/química , Tapsigargina/uso terapêutico , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Tapsigargina/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos
14.
Sci Rep ; 10(1): 18063, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093490

RESUMO

Noise-induced hearing loss (NIHL) is a common health concern with significant social, psychological, and cognitive implications. Moderate levels of acoustic overstimulation associated with tinnitus and impaired speech perception cause cochlear synaptopathy, characterized physiologically by reduction in wave I of the suprathreshold auditory brainstem response (ABR) and reduced number of synapses between sensory hair cells and auditory neurons. The unfolded protein response (UPR), an endoplasmic reticulum stress response pathway, has been implicated in the pathogenesis and treatment of NIHL as well as neurodegeneration and synaptic damage in the brain. In this study, we used the small molecule UPR modulator Integrated Stress Response InhiBitor (ISRIB) to treat noise-induced cochlear synaptopathy in a mouse model. Mice pretreated with ISRIB prior to noise-exposure were protected against noise-induced synapse loss. Male, but not female, mice also exhibited ISRIB-mediated protection against noise-induced suprathreshold ABR wave-I amplitude reduction. Female mice had higher baseline wave-I amplitudes but greater sensitivity to noise-induced wave-I reduction. Our results suggest that the UPR is implicated in noise-induced cochlear synaptopathy, and can be targeted for treatment.


Assuntos
Acetamidas/farmacologia , Acetamidas/uso terapêutico , Estimulação Acústica/efeitos adversos , Cóclea/patologia , Cicloexilaminas/farmacologia , Cicloexilaminas/uso terapêutico , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Caracteres Sexuais , Sinapses/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Células Ciliadas Auditivas , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/terapia , Masculino , Camundongos Endogâmicos CBA , Percepção da Fala , Zumbido
15.
Genes (Basel) ; 11(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961898

RESUMO

Animal fats are considered to be unhealthy, in contrast to vegetable fats, which are rich in unsaturated fatty acids. However, the use of some fats, such as coconut oil, is still controversial. In our experiment, we divided experimental animals (domestic pigs) into three groups differing only in the type of fat used in the diet: group R: rapeseed oil (n = 5); group B: beef tallow (n = 5); group C: coconut oil (n = 6). After transcriptomic analysis of liver samples, we identified 188, 93, and 53 DEGs (differentially expressed genes) in R vs. B, R vs. C, and B vs. C comparisons, respectively. Next, we performed a functional analysis of identified DEGs with String and IPA software. We observed the enrichment of genes engaged in the unfolded protein response (UPR) and the acute phase response among genes upregulated in B compared to R. In contrast, cholesterol biosynthesis and cholesterol efflux enrichments were observed among genes downregulated in B when compared to R. Moreover, activation of the UPR and inhibition of the sirtuin signaling pathway were noted in C when compared to R. The most striking difference in liver transcriptomic response between C and B was the activation of the acute phase response and inhibition of bile acid synthesis in the latest group. Our results suggest that excessive consumption of animal fats leads to the activation of a cascade of mutually propelling processes harmful to the liver: inflammation, UPR, and imbalances in the biosynthesis of cholesterol and bile acids via altered organelle membrane composition. Nevertheless, these studies should be extended with analysis at the level of proteins and their function.


Assuntos
Reação de Fase Aguda/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica , Fígado/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Feminino , Fígado/citologia , Fígado/efeitos dos fármacos , Masculino , RNA-Seq , Suínos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
J Dermatol Sci ; 98(1): 41-49, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32376153

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) calcium depletion-induced ER stress is a crucial signal for keratinocyte differentiation and barrier homeostasis, but its effects on the epidermal tight junction (TJ) have not been characterized. Ultraviolet B (UVB) causes ER calcium release in keratinocytes and disrupts epidermal TJ, however, the involvement of ER stress in the UVB-induced TJ alterations remains unknown. OBJECTIVES: To investigate the effect of ER stress by pharmacological ER calcium depletion or UVB on the TJ integrity in normal human epidermal keratinocytes (NHEK). METHODS: NHEK were exposed to ER calcium pump inhibitor thapsigargin (Tg) or UVB. ER stress markers and TJ molecules expression, TJ and F-actin structures, and TJ barrier function were analyzed. RESULTS: Tg or UVB exposure dose-dependently triggered unfolded protein response (UPR) in NHEK. Low dose Tg induced the IRE1α-XBP1 pathway and strengthened TJ barrier. Contrary, high dose Tg activated PERK phosphorylation and disrupted TJ by F-actin disorganization. UVB disrupted TJ and F-actin structures dose dependently. IRE1α RNase inhibition induced or exacerbated TJ and F-actin disruption in the presence of low dose Tg or UVB. High dose Tg increased RhoA activity. 4-PBA or Rho kinase (ROCK) inhibitor partially prevented the disruption of TJ and F-actin following high dose Tg or UVB. CONCLUSIONS: ER stress has bimodal effects on the epidermal TJ depending on its intensity. The IRE1α pathway is critical for the maintenance of TJ integrity during mild ER stress. Severe ER stress-induced UPR or ROCK signalling mediates the disruption of TJ through cytoskeletal disorganization during severe ER stress.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos da radiação , Queratinócitos/patologia , Junções Íntimas/patologia , Raios Ultravioleta/efeitos adversos , Amidas/farmacologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Retículo Endoplasmático/efeitos da radiação , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Fenilbutiratos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos da radiação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos da radiação , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Biofactors ; 46(4): 653-664, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32384218

RESUMO

Formation of atherosclerotic plaques, called atherogenesis, is a complex process affected by genetic and environmental factors. It was proposed that endoplasmic reticulum (ER) stress is an important factor in the pathogenesis of atherosclerosis and that vitamin E affects atherosclerotic plaque formation via its antioxidant properties. Here, we investigated ER stress-related molecular mechanisms in high-cholesterol diet (HCD, 2%)-induced atherosclerosis model and the role of vitamin E supplementation in it, beyond its antioxidant properties. The consequences of HCD and vitamin E supplementation were examined by determining protein levels of ER stress markers in aortic tissues. As vitamin E supplementation acts on several unfolded protein response (UPR) factors, it decreased ER stress induced by HCD. To elucidate the associated pathways, gene expression profiling was performed, revealing differentially expressed genes enriched in ER stress-related pathways such as the proteasome and the apoptosis pathways. We further assessed the proteasomal activity impaired by HCD in the aorta and showed that vitamin E reversed it to that of control animals. Overall, the study characterized the effects of HCD and vitamin E on ER stress-related gene expression, revealing the role of proteolytic systems during atherogenesis.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/genética , Colesterol/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipercolesterolemia/genética , Placa Aterosclerótica/genética , Vitamina E/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Hipercolesterolemia/etiologia , Hipercolesterolemia/patologia , Hipercolesterolemia/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Anotação de Sequência Molecular , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Coelhos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
Toxicol Appl Pharmacol ; 399: 115036, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32407927

RESUMO

Endoplasmic reticulum (ER) stress designates a cellular response to the accumulation of misfolded proteins, which is related to disease progression in the liver. Luteolin (3',4',5,7-tetrahydroxyflavone) is a phytochemical found frequently in medicinal herbs. Although luteolin has been reported to possess the therapeutic potential to prevent diverse stage of liver diseases, its role in hepatic ER stress has not been established. Thus, the present study aimed to determine the role of luteolin in tunicamycin (Tm)-induced ER stress, and to identify the relevant mechanisms involved in its hepatoprotective effects. In hepatocyte-derived cells and primary hepatocytes, luteolin significantly decreased Tm- or thapsigargin-mediated C/EBP homologous protein (CHOP) expression. In addition, luteolin reduced the activation of three canonical signaling pathways related to the unfolded protein response, and decreased mRNA levels of glucose-regulated protein 78, ER DNA J domain-containing protein 4, and asparagine synthetase. Luteolin also significantly upregulated sestrin 2 (SESN2), and luteolin-mediated CHOP inhibition was blocked in SESN2 (+/-) cells. Moreover, luteolin resulted in phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as increased nuclear Nrf2 expression. Deletion of the antioxidant response element in the human SESN2 promoter inhibited increased luciferase activation by luteolin, suggesting that Nrf2 is a critical transcription factor for luteolin-dependent SESN2 expression. In a Tm-mediated liver injury model, luteolin decreased serum alanine aminotransferase and aspartate aminotransferase activities, prevented degenerative changes and apoptosis of hepatocytes, and inhibited CHOP and glucose-regulated protein 78 expression in hepatic tissues. Therefore, luteolin may be an effective phytochemical to manage ER stress-related liver injury.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado/efeitos dos fármacos , Luteolina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Tunicamicina/farmacologia , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosforilação/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
Life Sci ; 255: 117842, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454157

RESUMO

The outbreak of COVID-19 caused by 2019-nCov/SARS-CoV-2 has become a pandemic with an urgent need for understanding the mechanisms and identifying a treatment. Viral infections including SARS-CoV are associated with increased levels of reactive oxygen species, disturbances of Ca++ caused by unfolded protein response (UPR) mediated by endoplasmic reticulum (ER) stress and is due to the exploitation of virus's own protein i.e., viroporins into the host cells. Several clinical trials are on-going including testing Remdesivir (anti-viral), Chloroquine and Hydroxychloroquine derivatives (anti-malarial drugs) etc. Unfortunately, each drug has specific limitations. Herein, we review the viral protein involvement to activate ER stress transducers (IRE-1, PERK, ATF-6) and their downstream signals; and evaluate combination therapies for COVID-19 mediated ER stress alterations. Melatonin is an immunoregulator, anti-pyretic, antioxidant, anti-inflammatory and ER stress modulator during viral infections. It enhances protective mechanisms for respiratory tract disorders. Andrographolide, isolated from Andrographis paniculata, has versatile biological activities including immunomodulation and determining SARS-CoV-2 binding site. Considering the properties of both compounds in terms of anti-inflammatory, antioxidant, anti-pyrogenic, anti-viral and ER stress modulation and computational approaches revealing andrographolide docks with the SARS-CoV2 binding site, we predict that this combination therapy may have potential utility against COVID-19.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Diterpenos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melatonina/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Fator 6 Ativador da Transcrição/metabolismo , Antivirais/farmacologia , COVID-19 , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Humanos , Terapia de Alvo Molecular , Pandemias , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2 , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165810, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339641

RESUMO

The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Neoplasias Retais/terapia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Células CACO-2 , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Fluoruracila/farmacologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Células HCT116 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Metástase Linfática , Proteínas de Membrana/metabolismo , Terapia Neoadjuvante/métodos , Paxilina/genética , Paxilina/metabolismo , Ligação Proteica , Neoplasias Retais/genética , Neoplasias Retais/metabolismo , Neoplasias Retais/patologia , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA