Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0261821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041689

RESUMO

The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.


Assuntos
Antivirais/farmacologia , Modelos Biológicos , Impressão Tridimensional , Retina , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus , Zika virus/fisiologia , Animais , Antivirais/química , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Retina/metabolismo , Retina/virologia , Células Vero , Replicação Viral/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo
2.
Gene Ther ; 21(1): 96-105, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225638

RESUMO

Recombinant adeno-associated viruses are important vectors for retinal gene delivery. Currently utilized vectors have relatively slow onset, and for efficient transduction it is necessary to deliver treatment subretinally, with the potential for damage to the retina. Amino-acid substitutions in the viral capsid improve efficiency in rodent eyes by evading host responses. As dogs are important large animal models for human retinitis pigmentosa, we evaluated the speed and efficiency of retinal transduction using capsid-mutant vectors injected both subretinally and intravitreally. We evaluated AAV serotypes 2 and 8 with amino-acid substitutions of surface-exposed capsid tyrosine residues. The chicken beta-actin promoter was used to drive green fluorescent protein expression. Twelve normal adult beagles were injected; four dogs received intravitreal injections and eight dogs received subretinal injections. Capsid-mutant viruses tested included AAV2(quad Y-F) (intravitreal and subretinal) and self-complementary scAAV8(Y733F) (subretinal only). Contralateral control eyes received injections of scAAV5 (subretinal) or scAAV2 (intravitreal). Subretinally delivered vectors had a faster expression onset than intravitreally delivered vectors. Subretinally delivered scAAV8(Y733F) had a faster onset of expression than scAAV5. All subretinally injected vector types transduced the outer retina with high efficiency and the inner retina with moderate efficiency. Intravitreally delivered AAV2(quad Y-F) had a marginally higher efficiency of transduction of both outer retinal and inner retinal cells than scAAV2. Because of their rapid expression onset and efficient transduction, subretinally delivered capsid-mutant AAV8 vectors may increase the efficacy of gene therapy treatment for rapid photoreceptor degenerative diseases. With further refinement, capsid-mutant AAV2 vectors show promise for retinal gene delivery from an intravitreal approach.


Assuntos
Capsídeo , Dependovirus/genética , Vetores Genéticos , Retina/metabolismo , Substituição de Aminoácidos , Animais , Dependovirus/fisiologia , Cães , Feminino , Humanos , Injeções Intraoculares , Masculino , Mutação , Proteínas Recombinantes/metabolismo , Retina/virologia , Transdução Genética , Tirosina , Tropismo Viral
3.
Hum Gene Ther ; 20(9): 943-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19416079

RESUMO

A phase 1 clinical trial evaluating the safety of gene therapy for patients with wet age-related macular degeneration (AMD) or retinoblastoma has been completed without problems. The efficacy of gene therapy for Leber's congenital amaurosis (LCA) was reported by three groups. Gene therapy may thus hold promise as a therapeutic method for the treatment of intractable ocular diseases. However, it will first be important to precisely evaluate the efficiency and safety of alternative gene transfer vectors in a preclinical study using large animals. In the present study, we evaluated the acute local (ophthalmic) and systemic toxicity of our simian immunodeficiency virus from African green monkeys (SIVagm)-based lentiviral vectors carrying human pigment epithelium-derived factor (SIV-hPEDF) for transferring genes into nonhuman primate retinas. Transient inflammation and elevation of intraocular pressure were observed in some animals, but these effects were not dose dependent. Electroretinograms (ERGs), including multifocal ERGs, revealed no remarkable change in retinal function. Histopathologically, SIV-hPEDF administration resulted in a certain degree of inflammatory reaction and no apparent structural destruction in retinal tissue. Regarding systemic toxicity, none of the animals died, and none showed any serious side effects during the experimental course. No vector leakage was detected in serum or urine samples. We thus propose that SIVagm-mediated stable gene transfer might be useful and safe for ocular gene transfer in a clinical setting.


Assuntos
Proteínas do Olho/genética , Vetores Genéticos/efeitos adversos , Fatores de Crescimento Neural/genética , Retina/virologia , Serpinas/genética , Vírus da Imunodeficiência Símia/genética , Transdução Genética , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde , Humanos , Macaca fascicularis , Modelos Animais , Retina/patologia , Transgenes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA