Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092092

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Assuntos
Bass , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Fatores Imunológicos/metabolismo , Poder Psicológico , Doenças dos Peixes/prevenção & controle
2.
Fish Shellfish Immunol ; 142: 109128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777100

RESUMO

In recent years, the exploration of natural compounds possessing both immunostimulatory and antiviral activities has attracted growing attention in aquaculture research. Consequently, the pursuit of identifying natural products exhibiting anti-SVCV potential as immunostimulants holds significant promise, offering a pathway to mitigate the economic ramifications inflicted by SVCV outbreaks in aquaculture settings. Among them, rhein emerges as a particularly compelling contender. Boasting a widespread distribution, well-established extraction methods, and multiple biological activities, it has exhibited the capacity to enhance the antiviral activity of host cells in vitro by blocking the viral internalization process, with a peak inhibition rate of 44.0%. Based on this intervention, rhein inhibited apoptosis and mitochondrial damage triggered by SVCV infection, ultimately producing a significant antiviral effect. Moving beyond the laboratory setting, rhein's efficacy translates effectively into in vivo scenarios. It has demonstrated substantial antiviral potency by increasing the expression of antiviral-related genes, most notably, retinoic acid-inducible gene I (RIG-I), interferon-φ (IFN-φ) and IFN-stimulated gene product 15 (ISG15). In concert with this genetic modulation, rhein efficiently reduces the viral load, precipitating a consequential enhancement in the survival rate of SVCV-infected fish, elevating it to an encouraging 16%. In conclusion, the outcomes of our investigation offer a compelling testament to rhein's potential as a valuable immunomodulator in the battle against SVCV infections in aquaculture, and the remarkable attributes exhibited by rhein underscore its viability for future commercial deployment.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Rhabdoviridae/fisiologia , Viremia/tratamento farmacológico , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Peixe-Zebra
3.
Fish Shellfish Immunol ; 137: 108782, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141957

RESUMO

Herbal immunomodulators are an important part of prevention and control on viral diseases in aquaculture because of their propensity to improve immunity in fish. The present study was conducted to evaluate the immunomodulatory effect and antiviral activity of a synthesized derivative (serial number: LML1022) against spring viremia of carp virus (SVCV) infection in vitro and in vivo. The antiviral data suggested that LML1022 at 100 µM significantly inhibited the virus replication in epithelioma papulosum cyprini (EPC) cells, and may completely inhibit the infectivity of SVCV virion particles to fish cells by affecting the viral internalization. The results in the related stability of water environments also demonstrated that LML1022 had an inhibitory half-life of 2.3 d at 15 °C, which would facilitate rapid degradation of LML1022 in aquaculture application. For in vivo study, the survival rate of SVCV-infected common carp was increased 30% at least under continuous oral injection of LML1022 at 2.0 mg/kg for 7 d treatment. Additionally, pretreatment of LML1022 on fish prior to SVCV infection also obviously reduced the viral loads in vivo as well as an improved survival rate, showing that LML1022 was potential as an immunomodulator. As an immune response, LML1022 significantly upregulated the immune-related gene expression including IFN-γ2b, IFN-I, ISG15 and Mx1, indicating that its dietary administration may improve the resistance of common carp against SVCV infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/tratamento farmacológico , Rhabdoviridae/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Fatores Imunológicos/farmacologia , Adjuvantes Imunológicos/farmacologia , Viremia/tratamento farmacológico
4.
J Virol ; 97(4): e0182922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943056

RESUMO

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Assuntos
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virais , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Quaternária de Proteína , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microscopia Crioeletrônica , Suramina/farmacologia
5.
Viruses ; 14(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36560722

RESUMO

Globodera pallida, a potato cyst nematode (PCN), is a quarantine endoparasitic pest of potato (Solanum tuberosum) in the US due to its effects on yield and quality of potato tubers. A new rhabdovirus, named potato cyst nematode rhabdovirus (PcRV), was revealed and characterized in the G. pallida populations collected in Idaho through use of high-throughput sequencing (HTS) and RT-PCR and found to be most closely related to soybean cyst nematode rhabdovirus (ScRV). PcRV has a 13,604 bp long, single-stranded RNA genome encoding five open reading frames, including four rhabdovirus-specific genes, N, P, G, and L, and one unknown gene. PcRV was found present in eggs, invasive second-stage juveniles, and parasitic females of G. pallida, implying a vertical transmission mode. RT-PCR and partial sequencing of PcRV in laboratory-reared G. pallida populations maintained over five years suggested that the virus is highly persistent and genetically stable. Two other Globodera spp. reproducing on potato and reported in the US, G. rostochiensis and G. ellingtonae, tested negative for PcRV presence. To the best of our knowledge, PcRV is the first virus experimentally found infecting G. pallida. Based on their similar genome organizations, the phylogeny of their RNA-dependent RNA polymerase domains (L gene), and relatively high identity levels in their protein products, PcRV and ScRV are proposed to form a new genus, provisionally named "Gammanemrhavirus", within the family Rhabdoviridae.


Assuntos
Rhabdoviridae , Solanum tuberosum , Tylenchoidea , Animais , Feminino , Rhabdoviridae/genética , Idaho , Tylenchoidea/genética
6.
Zool Res ; 43(6): 966-976, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257828

RESUMO

Spring viremia of carp virus (SVCV) is globally widespread and poses a serious threat to aquatic ecology and aquaculture due to its broad host range. To develop effective agents to control SVCV infection, we selected 16 naturally active small molecules to assess their anti-SVCV activity. Notably, dihydroartemisinin (DHA) (100 µmol/L) and (S, S)-(+)-tetrandrine (TET) (16 µmol/L) exhibited high antiviral effects in epithelioma papulosum cyprinid (EPC) cells, with inhibitory rates of 70.11% and 73.54%, respectively. The possible antiviral mechanisms were determined as follows: 1. Pre-incubation with DHA and TET decreased viral particle infectivity in fish cells, suggesting that horizontal transmission of SVCV in the aquatic environment was disrupted; 2. Although neither had an effect on viral adhesion, TET (but not DHA) interfered with SVCV entry into host cells (>80%), suggesting that TET may have an antiviral function in early viral replication. For in vivo study, both agents enhanced the survival rate of SVCV-infected zebrafish by 53.3%, significantly decreased viral load, and modulated the expression of antiviral-related genes, indicating that DHA and TET may stimulate the host innate immune response to prevent viral infection. Overall, our findings indicated that DHA and TET had positive effects on suppressing SVCV infection by affecting early-stage viral replication, thus holding great potential as immunostimulants to reduce the risk of aquatic rhabdovirus disease outbreaks.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/tratamento farmacológico , Antivirais/farmacologia , Peixe-Zebra , Replicação Viral , Viremia/veterinária , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico
7.
Front Immunol ; 13: 968348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990638

RESUMO

Spring viremia of carp virus (SVCV) can cause high mortality of fish. The aim of this study was to investigate the effects of Lactobacillus rhamnosus GCC-3 exopolysaccharides (GCC-3 EPS) on zebrafish (Danio rerio) infected with SVCV and elucidate the underlying mechanisms. Zebrafish were fed with a control diet or diet supplemented with 0.5% and 1% of GCC-3 EPS for 2 weeks. The results showed that supplementation of GCC-3 EPS significantly improved the survival rate of zebrafish compared with the control group. In addition, dietary 0.5% and 1% GCC-3 EPS significantly up-regulated the expression of genes related to type I interferon (IFN) antiviral immunity. Consistent with in vivo results, GCC-3 EPS significantly inhibited SVCV replication in zebrafish embryonic fibroblast (ZF4) cells while significantly increased the expression of type I IFN signaling pathway related genes. Furthermore, knocking down TANK-binding kinase 1 significantly blocked the antiviral effect of GCC-3 EPS. Dietary GCC-3 EPS improved gut microbiota, and the culture supernatant of GCC-3 EPS-associated microbiota significantly inhibited SVCV replication in ZF4 cells compared with the control-microbiota counterpart. In conclusion, our results indicate that dietary GCC-3 EPS can improve the resistance of zebrafish against SVCV infection, and the mechanism may involve enhanced type I interferon signaling.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Lacticaseibacillus rhamnosus , Infecções por Rhabdoviridae , Animais , Antivirais/uso terapêutico , Suplementos Nutricionais , Interferon Tipo I/uso terapêutico , Rhabdoviridae , Infecções por Rhabdoviridae/veterinária , Viremia , Peixe-Zebra
8.
Acta Virol ; 66(2): 149-156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766471

RESUMO

A novel, negative-sense, single-stranded RNA virus, Artemisia capillaris nucleorhabdovirus 1 (AcNRV1), was identified in the transcriptome data of Artemisia capillaris (commonly known as capillary wormwood) root tissue. The AcNRV1 genome contains six open reading frames encoding a nucleocapsid (N), phosphoprotein, movement protein P3, matrix protein, glycoprotein, and polymerase (L). Sequence comparison and phylogenetic analysis using L and N protein sequences revealed that AcNRV1 is a novel member of the genus Alphanucleorhabdovirus, one of the six plant-infecting rhabdovirus genera of the family Rhabdoviridae. Wheat yellow striate virus and rice yellow stunt virus were identified as the closest known rhabdoviruses of AcNRV1. The conserved regulatory sequences involved in transcription termination/polyadenylation (TTP) and transcription initiation (TI) of individual genes were identified in the AcNRV1 genome with the consensus sequence 3'-(A/U)UUAUUUUU-GGG-UUG-5' (in the negative-sense genome), whereby dashes separate the TTP, untranscribed intergenic spacer, and TI elements. The AcNRV1 genome sequence will contribute to further understanding the genome structural evolution of plant rhabdoviruses. Keywords: Artemisia capillaris nucleorhabdovirus 1; plant virus; Alphanucleorhabdovirus; Rhabdoviridae.


Assuntos
Artemisia , Rhabdoviridae , Artemisia/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Rhabdoviridae/genética , Transcriptoma , Proteínas Virais/genética
9.
Arch Virol ; 166(7): 1985-1990, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33881618

RESUMO

The genomes of three putative novel viruses, tentatively named "Bacopa monnieri virus 1" (BmV1), "Bacopa monnieri virus 2" (BmV2), and "Bacopa monnieri virus 3" (BmV3) were identified in the transcriptome dataset of a medicinally important herb - water hyssop (Bacopa monnieri (L.) Wettst.). The BmV1 and BmV2 genomes resemble those of plant rhabdoviruses. The 13.3-kb-long BmV1 genome contains eight antisense ORFs in the order 3' l-N-P2'-P-P3-M-G-P6-L-t 5', with P2' ORF overlapping with P, while the 13.2-kb BmV2 genome contains six interspersed ORFs in the antisense orientation (3' l-N-P-P3-M-G-L-t 5'). The 8-kb BmV3 genome possesses five overlapping ORFs, with ORFs 2 to 5 being similar to those of solendoviruses. Based on genome organization, sequence similarity, and phylogeny, BmV1, BmV2, and BmV3 can be regarded as new members of the genera Cytorhabdovirus, Betanucleorhabdovirus, and Solendovirus, respectively.


Assuntos
Bacopa/genética , Bacopa/virologia , Caulimoviridae/genética , Genoma Viral/genética , Rhabdoviridae/genética , Transcriptoma/genética , Fases de Leitura Aberta/genética , Filogenia , Plantas Medicinais/genética
10.
Arch Virol ; 166(6): 1615-1622, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774730

RESUMO

We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.


Assuntos
Doenças das Plantas/virologia , Rhabdoviridae/isolamento & purificação , Solanum/virologia , Brasil , Genoma Viral , Filogenia , Folhas de Planta/virologia , Vírus de Plantas , Rhabdoviridae/genética
11.
J Fish Biol ; 98(1): 208-218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33000466

RESUMO

Selenium, as an essential trace element, interferes through selenoproteins in many physiological processes of plants and mammals. Its antiviral activity has recently attracted much attention because selenium improves the antiviral capacity of animal cells against a few viruses relevant to human diseases. In this study, the red elemental selenium was purified from the fermentative culture of Herbaspirillum camelliae WT00C and then used to culture epithelioma papulosum cyprinid (EPC) cells or feed crucian carp and zebrafish. Finally, its antiviral effects were investigated at the cell level and living fishes after spring viraemia of carp virus infection. At the cell level, 5, 10 and 20 µg ml-1 red elemental selenium significantly induced the expression of interferon (IFN) and ISG15 genes in EPC cells. The viral TCID50 (50% tissue culture infective dose) values in the EPC cells incubated with 5, 10 and 20 µg ml-1 red elemental selenium were significantly less than those of the control. More expression of IFN and ISG15 genes and less TCID50 values indicate that red elemental selenium indeed improves the antiviral capability of EPC cells. In the crucian carp fed with the food containing 5 and 10 µg g-1 red elemental selenium, IFN expressions showed 13- and 39-fold increases at the 16th day of post-injection, and its expression was dependent on selenium concentrations. Meanwhile, no fish death occurred in all the experimental groups. In the zebrafish fed with the red worm containing 5 µg g-1 red elemental selenium, IFN and Mx expressions and survival rate were significantly higher than those of the control. The results of this study show that red elemental selenium indeed improves the antiviral activity of fish. The antiviral effects of selenium mainly come from its immune regulation through its incorporation into selenoproteins. The optimum level of selenium contributes to improving fish immunity, whereas excess selenium causes excessive immune and inflammatory responses.


Assuntos
Carpas/imunologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/imunologia , Infecções por Rhabdoviridae/veterinária , Selênio/farmacologia , Viremia/veterinária , Peixe-Zebra/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Antivirais/farmacologia , Carcinoma , Carpas/virologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Interferons/genética , Rhabdoviridae , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/imunologia , Selênio/uso terapêutico , Viremia/tratamento farmacológico , Viremia/imunologia , Peixe-Zebra/virologia
12.
Acta Virol ; 64(1): 36-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180417

RESUMO

The genome sequence of a novel RNA virus, Trichosanthes associated rhabdovirus 1 (TrARV1), was identified in a transcriptome dataset isolated from a root sample of Trichosanthes kirilowii, which is a flowering plant belonging to the family Cucurbitaceae. The fruits, seeds, and root tubers of T. kirilowii have been used clinically in traditional Chinese medicine. The TrARV1 genome sequence was predicted to have six open reading frames (ORFs) encoding five canonical structural proteins of the family Rhabdoviridae (N ORF for nucleocapsid, P ORF for phosphoprotein, M ORF for matrix protein, G ORF for glycoprotein, and L ORF for polymerase), and an accessory protein. Sequence comparisons and phylogenetic analyses based on L and N proteins confirmed that TrARV1 is a novel member of the genus Cytorhabdovirus of the family Rhabdoviridae. TrARV1 is most closely related to Wuhan insect virus 5 and persimmon virus A. The putative cis-regulatory elements involved in transcription termination and polyadenylation, commonly found in the gene junction regions of rhabdoviruses, were also identified in the TrARV1 genome having the consensus sequence 3'- ACUAAAUUAUUUUGAUCUUU-5'. The genome sequence of TrARV1 may be useful to study the evolution and molecular biology of cytorhabdoviruses. Keywords: Trichosanthes associated rhabdovirus 1; Cytorhabdovirus; Rhabdoviridae; Trichosanthes kirilowii.


Assuntos
Filogenia , Vírus de Plantas/classificação , Rhabdoviridae/classificação , Transcriptoma , Trichosanthes/virologia , Genoma Viral , Fases de Leitura Aberta , Vírus de Plantas/isolamento & purificação , Rhabdoviridae/isolamento & purificação , Proteínas Virais/genética
13.
Methods Mol Biol ; 2058: 285-293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486046

RESUMO

Oncolytic viral immunotherapy based on the MG1 Maraba platform has undergone extensive preclinical evaluation, resulting in the advancement of two programs into clinical trials. MG1 Maraba encoding tumor antigens (tumor associated antigens or viral antigens) are used to boost antitumor immunity, while MG1 Maraba infects tumors, causes oncolysis and transforms the tumor microenvironment. An overview of MG1 Maraba clinical development is outlined here, along with general considerations relating to the design of clinical trials for complex biologic products such as oncolytic viral immunotherapies. These include choice of patient population, optimized treatment regimen, and endpoints which provide early signals of activity and inform the late-stage development path of these agents with novel mechanisms of action.


Assuntos
Vetores Genéticos/genética , Vírus Oncolíticos/genética , Rhabdoviridae/genética , Pesquisa Translacional Biomédica , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Engenharia Genética , Terapia Genética/métodos , Humanos , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Projetos de Pesquisa , Rhabdoviridae/imunologia
14.
J Interferon Cytokine Res ; 40(2): 92-105, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633442

RESUMO

Virus-like vesicles (VLV) are infectious, self-propagating alphavirus-vesiculovirus hybrid vaccine vectors that can be engineered to express foreign antigens to elicit a protective immune response. VLV are highly immunogenic and nonpathogenic in vivo, and we hypothesize that the unique replication and structural characteristics of VLV efficiently induce an innate antiviral response that enhances immunogenicity and limits replication and spread of the vector. We found that VLV replication is inhibited by interferon (IFN)-α, IFN-γ, and IFN-λ, but not by tumor necrosis factor-α. In cell culture, VLV infection activated IFN production and expression of IFN-stimulated genes (ISGs), such as MXA, ISG15, and IFI27, which were dependent on replication of the evolved VLV-encoded Semliki Forest virus replicon. Knockdown of the pattern recognition receptors, retinoic acid-inducible gene I and melanoma differentiation-associated protein 5 or their intermediary signaling protein mitochondrial antiviral-signaling protein (MAVS) blocked IFN production. Furthermore, ISG expression in VLV-infected cells was dependent on IFN receptor signaling through the Janus kinase (JAK) tyrosine kinases and phosphorylation of the STAT1 protein, and JAK inhibition restored VLV replication in otherwise uninfectable cell lines. This work provides new insight into the mechanism of innate antiviral responses to a hybrid virus-based vector and provides the basis for future characterization of the platform's safety and adjuvant-like effects in vivo. [Figure: see text].


Assuntos
Alphavirus/imunologia , Imunidade Inata/imunologia , Rhabdoviridae/imunologia , Vacinas Virais/imunologia , Células Cultivadas , Humanos , Interferons/imunologia , Replicação Viral/imunologia
15.
Dokl Biochem Biophys ; 484(1): 88-91, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012023

RESUMO

The role of the nuclear protein coilin in the mechanisms of resistance of potato Solanum tuberosum cultivar Chicago to biotic and abiotic stresses was studied using the CRISPR-Cas9 technology. For the coilin gene editing, a complex consisting of the Cas9 endonuclease and a short guide RNA was immobilized on gold or chitosan microparticles and delivered into apical meristem cells by bioballistics or vacuum infiltration methods, respectively. Editing at least one allele of the coilin gene considerably increased the resistance of the edited lines to infection with the potato virus Y and their tolerance to salt and osmotic stress.


Assuntos
Resistência à Doença , Meristema , Proteínas Nucleares , Pressão Osmótica , Doenças das Plantas/virologia , Proteínas de Plantas , Rhabdoviridae/metabolismo , Solanum tuberosum , Sistemas CRISPR-Cas , Meristema/genética , Meristema/metabolismo , Meristema/virologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
17.
Fish Shellfish Immunol ; 82: 17-26, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077800

RESUMO

Spring viraemia of carp virus (SVCV) is a viral fish pathogen causing high mortality in several carp species and other cultivated fish. However, robust anti-SVCV drugs currently are extremely scarce. For the purpose of seeking out anti-SVCV drugs, here a total of 35 arctigenin derivatives were designed, synthesized and evaluated for their anti-viral activities. By comparing the inhibitory concentration at half-maximal activity (IC50) of the 15 screened candidate drugs (max inhibitory response surpassing 90%) in epithelioma papulosum cyprini (EPC) cells infected with SVCV, 2Q and 6 A were chosen for additional validation studies, with an IC50 of 0.077 µg/mL and 0.095 µg/mL, respectively. Further experiments revealed that 2Q and 6 A could significantly decrease SVCV-induced apoptosis and have a protective effect on cell morphology at 48 and 72 h post-infection. Moreover, the reactive oxygen species (ROS) induced upon SVCV infection could be obviously inhibited by 2Q and 6 A, while SVCV-infected cells were clearly observed. On account of these findings, 2Q and 6 A could have a promising application for the treatment of infection of SVCV and provide a considerable reference for novel antivirals in aquaculture.


Assuntos
Antivirais/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Rhabdoviridae/efeitos dos fármacos , Animais , Carpas , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/veterinária , Ésteres/química , Éteres/química , Testes de Sensibilidade Microbiana
18.
Virus Res ; 255: 24-35, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913251

RESUMO

As one of nine piscine viruses recognized by the International Office of Epizootics, spring viraemia of carp virus (SVCV) is an important pathogen bringing high mortality to cyprinids. Up to now, there is no approved therapy on SVCV, making them strong public health threat in aquaculture. In this study, the anti-SVCV activities of 12 plant crude extracts were investigated by using epithelioma papulosum cyprini (EPC) cells. Among these plants, Psoralea corylifolia Linn. showed the highest inhibition on SVCV replication, with an inhibitory percentage of 67.98%. Further studies demonstrated that bavachin (BVN), one of the major constituents of Psoralea corylifolia Linn., was also highly effective to SVCV infection. The half maximal inhibitory concentrations (IC50) of BVN on SVCV glycoprotein and nucleoprotein expression were 0.46 (0.29-0.73) and 0.31 (0.13-0.55) mg/L, respectively. In addition, SVCV-induced apoptosis which may be negative to SVCV replication was inhibited by BVN. The apoptotic cells were decreased 21.42% for BVN compared with SVCV group. These results indicated that the inhibition of BVN on SVCV replication was, in some extent, via blocking SVCV induced apoptosis. Furthermore, cellular morphological damage induced by SVCV was also blocked by BVN treatment. Mechanistically, BVN did not affect SVCV infectivity and cannot be used for prevention of SVCV infection. Time-of-addition and viral binding assays revealed that BVN mainly inhibited the early events of SVCV replication but did not interfere with SVCV adsorption. In conclusion, BVN was considered to develop as a promising agent to treat SVCV infection.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Flavonoides/farmacologia , Psoralea/química , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Doenças dos Peixes/patologia , Flavonoides/isolamento & purificação , Concentração Inibidora 50 , Plantas Medicinais/química , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/patologia , Infecções por Rhabdoviridae/virologia , Carga Viral/efeitos dos fármacos , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
19.
J Gen Virol ; 98(6): 1526-1536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635588

RESUMO

The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.


Assuntos
Variação Genética , Interações Hospedeiro-Patógeno , Rhabdoviridae/genética , Rhabdoviridae/fisiologia , Proteínas Virais/análise , Proteínas Virais/genética , Capsicum/virologia , Ordem dos Genes , Genoma Viral , Solanum lycopersicum/virologia , Microscopia Confocal , Fases de Leitura Aberta , Análise de Sequência de DNA , Solanum tuberosum/virologia , Nicotiana/virologia
20.
Fish Shellfish Immunol ; 43(1): 13-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524497

RESUMO

As an intracellular pattern recognition receptor (PRR), the retinoic acid-inducible gene-I (RIG-I) is responsible for the recognition of cytosolic viral nucleic acids and the production of type I interferons (IFNs). In the present study, an insertion variant of RIG-I with 38 amino acids inserted in the N-terminal CARD2 domain, as well as the typical type, named as RIG-Ia and RIG-Ib respectively were identified in zebrafish. RIG-Ia and RIG-Ib were all up-regulated following the infection of a negative ssRNA virus, the Spring Viremia of Carp Virus (SVCV), and an intracellular Gram-negative bacterial pathogen Edwardsiella tarda, indicating the RLR may have a role in the recognition of both viruses and bacteria. The over-expression of RIG-Ib in cultured fish cells resulted in significant increase in type I IFN promoter activity, and in protection against SVCV infection, whereas the over-expression of RIG-Ia had no direct effect on IFN activation nor antiviral response. Furthermore, it was revealed that both RIG-Ia and RIG-Ib were associated with the downstream molecular mitochondrial antiviral signaling protein, MAVS, and interestingly RIG-Ia when co-transfected with RIG-Ib or MAVS, induced a significantly higher level of type I IFN promoter activity and the expression level of Mx and IRF7, implying that the RIG-Ia may function as an enhancer in the RIG-Ib/MAVS-mediated signaling pathway.


Assuntos
Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/genética , Regulação da Expressão Gênica , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência/veterinária , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA