Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346851

RESUMO

AIM: To investigate antifungal activity of the extract and major metabolite of the endophytic fungus Acrophialophora jodhpurensis (belonging to Chaetomiaceae) against crown and root rot caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), as an important pathogen of tomato. METHODS AND RESULTS: The endophytic fungus A. jodhpurensis, has high inhibitory effect against R. solani AG4-HG II in vitro and in vivo. The media conditions were optimized for production of the endophyte's metabolites. The highest amounts of secondary metabolites were produced at pH 7, 30°C temperature, and in the presence of 0.5% glucose, 0.033% sodium nitrate, and 1 gl-1 asparagine as the best carbon, nitrogen, and amino acid sources, respectively. The mycelia were extracted by methanol and the obtained extract was submitted to various chromatography techniques. Phytochemical analysis via thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) spectroscopy showed that ergosterol peroxide was the major component in the extract of this endophyte. Antifungal activities of the methanolic extract and ergosterol peroxide in the culture media were studied against R. solani. Minimum inhibitory concentrations of the extract and ergosterol peroxide against the pathogen were 600 and 150 µg ml-1, respectively. Ergosterol peroxide revealed destructive effects on the pathogen structures in microscopic analyses and induced sclerotia production. Histochemical analyses revealed that it induced apoptosis in the mycelia of R. solani via superoxide production and cell death. Application of ergosterol peroxide in the leaf disc assay reduced the disease severity in tomato leaves. CONCLUSIONS: Antifungal metabolites produced by A. jodhpurensis, such as ergosterol peroxide, are capable of controlling destructive Rhizoctonia diseases on tomato.


Assuntos
Antifúngicos , Ergosterol/análogos & derivados , Rhizoctonia , Sordariales , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Extratos Vegetais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Sci Rep ; 13(1): 13884, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620354

RESUMO

Improving agricultural products by the stimulation of plant growth and defense mechanisms by priming with plant extracts is needed to attain sustainability in agriculture. This study focused to consider the possible improvement in Vigna radiata L. seed germination rate, plant growth, and protection against the natural stress by increasing the defense mechanisms through the incorporation of Sesamum indicum phytochemical compounds with pre-sowing seed treatment technologies. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis revealed that the methanol extract of S. indicum leaf extract contained eight major bioactive compounds, namely, 2-ethylacridine (8.24%), tert-butyl (5-isopropyl-2-methylphenoxy) dimethylsilane (13.25%), tris(tert-butyldimethylsilyloxy) arsane (10.66%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (18.50%), acetamide, N-[4-(trimethylsilyl) phenyl (19.97%), 3,3-diisopropoxy-1,1,1,5,5,5-hexamethyltrisiloxane (6.78%), silicic acid, diethyl bis(trimethylsilyl) ester (17.71%) and cylotrisiloxane, hexamethyl-(4.89%). The V. radiata seeds were treated with sesame leaf extract seeds at concentrations 0, 10, 25, 50, and 100 mg/L. Sesame leaf extract at 50 and 100 mg/L concentrations was effective in increasing the germination percentage and the fresh and dry weights of roots and shoots. The increased peroxidase activity was noticed after treatment with S. indicum extract. In addition, disease percentage (< 60%) of both fungal pathogens (Rhizoctonia and Macrophomina) was significantly reduced in V. radiata plants treated with 100 mg/L of sesame leaf extract. These results revealed that physiochemical components present in S. indicum mature leaf extract significantly enhanced growth and defense mechanism in green gram plants.


Assuntos
Ascomicetos , Sesamum , Vigna , Rhizoctonia , Agricultura , Cortodoxona , Mecanismos de Defesa
4.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37119263

RESUMO

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Assuntos
Fagopyrum , Fagopyrum/genética , Perfilação da Expressão Gênica , Virulência/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistência à Doença/genética , Multiômica
5.
Plant Dis ; 107(4): 1139-1150, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36190299

RESUMO

Wheat sharp eyespot is a serious disease caused by the phytopathogens Rhizoctonia cerealis and R. solani. Some species in the genus Streptomyces have been identified as potential biocontrol agents against phytopathogens. In this investigation, the physiological, biochemical, phylogenetic, and genomic characteristics of strain HU2014 indicate that it is a novel Streptomyces sp. most closely related to Streptomyces albireticuli. Strain HU2014 exhibited strong antifungal activity against R. cerealis G11 and R. solani YL-3. Ultraperformance liquid chromatography-mass spectrometry on the four extracts from the extracellular filtrate of strain HU2014 identified 10 chemical constituents in the Natural Products Atlas with high match levels (more than 90%). In an antifungal efficiency test on wheat sharp eyespot, two extracts significantly reduced the lesion areas on bean leaves infected by R. solani YL-3. The drenching of wheat in pots with spore suspension of strain HU2014 demonstrated a control efficiency of 65.1% against R. cerealis G11 (compared with 66.9% when treated by a 30% hymexazol aqueous solution). Additionally, in vitro and pot experiments demonstrated that strain HU2014 can produce indoleacetic acid, siderophores, extracellular enzymes, and solubilized phosphate, and it can promote plant growth. We conclude that strain HU2014 could be a valuable microbial resource for growth promotion of wheat and biological control of wheat sharp eyespot.


Assuntos
Rhizoctonia , Streptomyces , Rhizoctonia/fisiologia , Triticum/microbiologia , Antifúngicos , Filogenia , Doenças das Plantas/microbiologia , Extratos Vegetais
6.
Planta ; 257(1): 13, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522558

RESUMO

MAIN CONCLUSION: Screening for resistance in 40 potato genotypes to Rhizoctonia solani AG-3PT-stem-canker, antioxidant enzymes activity as well as total phenol compounds were documented. Rhizoctonia solani AG-3PT-stem-canker is one of the most devastating diseases that leads to severe economic losses in potatoes, Solanum tuberosum globally. Crop management and eugenic practices, especially the use of resistance can be effective in reducing the disease incidence. However, the information about potato-R. Solani interaction is still limited. This study explored screening for resistance in forty potato genotypes to R. solani, analyzing biomass growth parameters (BGPs), as well as antioxidant enzymes activity of which peroxidase/peroxide-reductases (POXs), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), phenylalanine ammonia-lyase (PAL), ß-1,3-glucanase (GLU) and total phenol compounds (TPCs) were taken into account. In addition, we analyzed up-regulation of two gene markers (PR-1 and Osmotin), using reverse transcription quantitative PCR (RT-qPCR). For which, the resistant 'Savalan', partially resistant 'Agria', partially susceptible 'Sagita' and susceptible 'Pashandi' were selected to explore the trails in their roots and leaves over the time courses of 1, 2 and 3-weeks post inoculation (wpi) following inoculation. Cluster analysis divided potatoes into four distinct groups, based on disease severity scales (0-100%) significance. The BGPs, shoot and root length, fresh and dry weight, and root volume were also significantly higher in infected potatoes compared to non-inoculated controls. Antioxidant enzymes activity also indicated the highest increased levels for POX (fourfold at 3wpi), CAT (1.5-fold at 3wpi), SOD (6.8-fold at 1wpi), and PAL (2.7-fold at 3wpi) in the resistant genotype, 'Savalan', whereas the highest activity was recorded in TPC (twofold at 1 wpi), PPO (threefold at 3wpi), and GLU (2.3-fold at 1wpi) in partially resistant genotypes. Although the defense-related enzymatic activities were sharply elevated in the resistant and partially resistant genotypes following inoculation, no significant correlations were between the activity trends of the related enzymes. The two related gene markers also showed comprehensive transcriptional responses up to 3.4-fold, predominantly in resistant genotypes. Surprisingly, the PR-1 gene marker, basically resistant to Wilting agent Verticillium dahlia was overexpressed in resistant 'Savalan' and 'Agria' against R. solani AG3-PT. Similar results were obtained on Osmotin gene marker resistant to late-blight P. infestans, and early-blight Alternaria solani that similarly modulates immunity against R. solani. Furthermore, there was a significant correlation between resistance, enzyme activity, and gene expression in the aforesaid cultivars. Studying the physiological metabolic pathways of antioxidant enzymes activity appears to be an important direction in research to elucidate resistance to R. solani in potatoes.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Doença/genética , Antioxidantes , Doenças das Plantas , Rhizoctonia/fisiologia , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Catecol Oxidase/metabolismo , Superóxido Dismutase , Fenóis , Mecanismos de Defesa
7.
Plant Dis ; 106(10): 2730-2740, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36094426

RESUMO

As the excessive use of chemical fertilizers harms organisms and adversely affects the soil environment, the replacement of chemical fertilizers with biological fertilizers has attracted widespread attention as an environmental protection strategy. In this study, the effects of rhizosphere bacteria inoculation on growth of Pinus sylvestris var. mongolica seedlings, soil parameters, soil microbial community structure, and the biocontrol of damping-off were studied by pot experiments. The results showed that all three rhizosphere bacteria (Pseudomonas chlororaphis, Pseudomonas extremaustralis, and Acinetobacter lwoffii A07) tested exhibited growth-promoting properties, such as the production of indole-3-acetic acid, hydrolase, siderophores, and hydrogen cyanide; nitrogen fixation; and phosphorus solubilization. The application of the three bacteria increased plant biomass, root structure, and nutrient content and also increased soil nutrient content and enzyme activity. Bacterial inoculation promoted the growth of beneficial bacteria and antagonistic bacteria by adjusting the physicochemical properties of the soil, thereby improving the bacterial community structure. Among the soil features, available nitrogen, total nitrogen, available potassium, and urease activity were the main influencing factors. In addition, it was also found that bacterial inoculation significantly increased the activities of plant superoxide dismutase, catalase, peroxidase, and other defense enzymes; enhanced plant disease resistance; effectively inhibited damping-off; and promoted plant growth. In summary, the application of three rhizosphere bacteria systematically affected the interaction between plants, soil parameters, and soil microbial communities. These results provide a basis for understanding how rhizosphere bacteria promote the growth of P. sylvestris var. mongolica, thereby offering a promising sustainable alternative to chemical fertilizers.


Assuntos
Microbiota , Pinus sylvestris , Bactérias , Catalase , Fertilizantes , Cianeto de Hidrogênio , Nitrogênio/análise , Fósforo , Potássio , Rhizoctonia , Plântula/química , Sideróforos , Solo/química , Superóxido Dismutase , Urease
8.
Braz J Biol ; 84: e263114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35703633

RESUMO

The use of natural products obtained from plants, for example, invasive plants, offers a variety of allelochemicals with fungicidal potential. With this in perspective, the objective was to evaluate the fungicidal potential of ethanolic extracts of Cerrado plants on Rhizoctonia solani and Macrophomina phaseolina. The ethanolic hydroalcoholic extract of the 12 plants identified as invaders in the Brazilian Cerrado was prepared (Anacardium humile Saint Hill; Baccharis dracunculifolia DC.; Cenchrus echinatus L; Commelina erecta L.; Erigeron bonariensis L.; Digitaria horizontalis Willd.; Digitaria insularis L.; Porophyllum ruderale Jacq. Cass; Richardia brasiliensis Gomes; Sida rhombifolia L.; Turnera ulmifolia L.; Smilax fluminensis Steud)) and phytochemical screening and determination of total phenols and flavonoids were performed. To evaluate the in vitro antifungal activity, the hydroalcoholic solutions at concentrations of 800, 1200, 1600, 2000, and 2400 µL 100 mL-1 were separately incorporated into BDA agar and poured into Petri dishes, followed by the mycelium disk of the fungus. As a control, two solutions were prepared, one ethanolic solution added to the BDA medium (2400 µg 100 mL-1) and the other with BDA medium only. They were poured into Petri dishes, followed by a 0.5 cm diameter disk of mycelium of the fungus, incubated (23±2 ºC), with a 24-hour photoperiod. Among the constituents found in the plants, 75% are phenolic compounds, 58.3% are cardiotonic heterosides, 50% are steroids, 33.3% are flavonoids, 16.7% are anthraquinones, and 8.3% are alkaloids, saponins, and reducing sugars. Out of the 12 species, only the extracts of C. erecta and R. brasiliensis were active for M. phaseolina and R. solani. Thus, it is concluded that the ethanolic extract of C. erecta has the fungicidal potential to control diseases caused by fungi that are soil inhabitants. Of the other species, A. humille, B. dracuncufolia, D. insulares, C. erecta, D. insulares, P. ruderale, and R. brasiliensis have natural fungitoxic potential because they stand out in the content of polyphenols efficient in reducing the mycelial growth of M. phaseolina and R. solani.


Assuntos
Compostos Fitoquímicos , Rhizoctonia , Ascomicetos , Brasil , Flavonoides , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
9.
Int J Biol Macromol ; 215: 321-333, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718157

RESUMO

To develop an understanding mechanism to define responding of potatoes to R. solani, we analyzed the expression of ten novel candidate gene-markers using reverse-transcription-quantitative PCR (RT-qPCR) in resistant 'Savalan' and partially resistant 'Agria' in contrast to susceptible 'Sagita', and partially susceptible 'Pashandi'. In addition, oxidant-enzymatic-activity of catalase and superoxide-dismutase, as well as biomass-growth-parameters; shoot and root length, fresh and dry weight, and root volume were considered as complementary factors to the involving mechanism accordingly. Gene-markers up-regulated maximum up to 3.5-fold with the highest correlation, r = 0.939** following R. solani-inoculation, predominantly in resistant genotypes. Surprisingly, WRKY8-gene, basically resistant to late-blight-Phytophtora infestans was also up-regulated to 2.3-fold in resistant 'Savalan' followed by 'Agria'. Similar results with 3.1-fold were obtained on Osmotin-gene resistant to early-blight-Alternaria alternata. Enzymatic-activity of catalase with 1.6-fold and superoxide-dismutase, 6.8-fold also showed the highest level of activity in resistant genotypes, and had a high significant correlation, r = 773** and r = 0.881** with expression levels of related gene-markers respectively. Similarly, there were significant differences in biomass-growth-parameters, but with reductions in partially susceptible 'Sagita' and susceptible 'Pashandi'. Conclusively, S. tuberosum-R. solani interaction revealed that certain gene-markers can cover resistance to more than one disease simultaneously.


Assuntos
Solanum tuberosum , Catalase/genética , Doenças das Plantas/genética , Rhizoctonia , Solanum tuberosum/genética , Superóxidos
10.
Phytopathology ; 112(10): 2099-2109, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35536116

RESUMO

Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Celulases , Quitinases , Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Celulases/metabolismo , Celulases/farmacologia , Quitinases/metabolismo , Endopeptidase K/metabolismo , Endopeptidase K/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Poligalacturonase/metabolismo , Rhizoctonia , Sideróforos/metabolismo , Sideróforos/farmacologia , Solanum tuberosum/microbiologia
11.
Plant Dis ; 106(12): 3127-3132, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35536211

RESUMO

A survey of the relative incidence of anastomosis groups (AGs) of Rhizoctonia spp. associated with potato disease was conducted in Idaho, the leading potato producing state in the U.S.A. In total, 169 isolates of Rhizoctonia solani and seven binucleate Rhizoctonia (BNR) isolates were recovered from diseased potato plants. The AG of each isolate was determined through real-time PCR assays for AG 3-PT and phylogenetic analysis of the internal transcribed spacer region of ribosomal DNA. AG 3-PT was the predominant AG, accounting for 85% of isolates recovered, followed by AG 2-1 (5.7%) and AG 4 HG-II (4.5%). Two different subsets of AG 2-1 isolates were recovered (subset 2 and 3). Three isolates each of AG A and AG K were recovered, as well as one isolate each of AG 5 and AG W. An experiment carried out under greenhouse conditions with representative isolates of the different AGs recovered from Idaho potatoes showed differences in aggressiveness between AGs to potato stems, with AG 3-PT being the most aggressive followed by an isolate of AG 2-1 (subset 3). The three BNR isolates representative of AG A, AG K, and AG W appeared to be less aggressive to potato stems than the R. solani isolates except for the AG 2-1 (subset 2) isolate. This is the first comprehensive study of the relative incidences of Rhizoctonia species associated with Idaho potatoes and the first study to report the presence of BNR AG W outside of China.


Assuntos
Rhizoctonia , Solanum tuberosum , Rhizoctonia/genética , Filogenia , Idaho , Doenças das Plantas , Anastomose Cirúrgica
12.
An Acad Bras Cienc ; 94(1): e20200851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293512

RESUMO

The current study was designed to evaluate the antifungal properties of Datura metel L. against Rizoctonia solani Kuhn. To achieve this objective, six concentrations of leaves & stem methanol extract of D. metel viz. 1%, 1.5%, 2%, 2.5%, 3% & 3.5% were tested against R. solani in vitro. Leaf extract of D. metel was found more effective as its 3.5% concentration caused 75% retardation in test fungal growth as compared to the stem extract. D. metel methanolic leaf extract was fractioned between n-butanol, n-hexane, chloroform & ethyl acetate & bioactivities of isolated fractions were tested against R. solani. The chloroform fraction was found highly effective, as its concentrations 0.1% & 0.01% caused 27% & 21% growth inhibition respectively. So, this particular chloroform fraction was further analyzed to identify various chemical constituents through GC-MS (Gas chromatography mass spectroscopic) analysis. Twelve phyto-constituents viz. eugenol, 2-pentadecanone 6,10,14 trimethyl, pentadecanoic acid, pentadecanoic acid, 1 4-methyl- methyl ester, phytol, 9,12,15-octadecatrienoic acid, heptacosane, n-hexadecanoic, 6-octadecanoic acid, 9, 12 octadecanoic acid, dodecanoic & tetradecanoic acids were identified. So, the present study concluded that the presence of these bioactive constituents make D. metel as an effective antifungal agent against R. solani.


Assuntos
Datura metel , Antifúngicos/química , Antifúngicos/farmacologia , Datura metel/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rhizoctonia
13.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163289

RESUMO

Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.


Assuntos
Beta vulgaris/microbiologia , Leuconostoc mesenteroides/metabolismo , Rhizoctonia/enzimologia , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Parede Celular/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Leuconostoc mesenteroides/patogenicidade , Defesa das Plantas contra Herbivoria/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizoctonia/patogenicidade
14.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208971

RESUMO

The aim of our study was to examine the different concentrations of AuNPs as a new antimicrobial substance to control the pathogenic activity. The extracellular synthesis of AuNPs performed by using Phoma sp. as an endophytic fungus. Endophytic fungus was isolated from vascular tissue of peach trees (Prunus persica) from Baft, located in Kerman province, Iran. The UltraViolet-Visible Spectroscopy (UV-Vis spectroscopy) and Fourier transform infrared spectroscopy provided the absorbance peak at 526 nm, while the X-ray diffraction and transmission electron microscopy images released the formation of spherical AuNPs with sizes in the range of 10-100 nm. The findings of inhibition zone test of Au nanoparticles (AuNPs) showed a desirable antifungal and antibacterial activity against phytopathogens including Rhizoctonia solani AG1-IA (AG1-IA has been identified as the dominant anastomosis group) and Xanthomonas oryzae pv. oryzae. The highest inhibition level against sclerotia formation was 93% for AuNPs at a concentration of 80 µg/mL. Application of endophytic fungus biomass for synthesis of AuNPs is relatively inexpensive, single step and environmentally friendly. In vitro study of the antifungal activity of AuNPs at concentrations of 10, 20, 40 and 80 µg/mL was conducted against rice fungal pathogen R. solani to reduce sclerotia formation. The experimental data revealed that the Inhibition rate (RH) for sclerotia formation was (15, 33, 74 and 93%), respectively, for their corresponding AuNPs concentrations (10, 20, 40 and 80 µg/mL). Our findings obviously indicated that the RH strongly depend on AuNPs rates, and enhance upon an increase in AuNPs rates. The application of endophytic fungi biomass for green synthesis is our future goal.


Assuntos
Antibacterianos , Antifúngicos , Biomassa , Endófitos/química , Ouro , Nanopartículas Metálicas/química , Phoma/química , Rhizoctonia/crescimento & desenvolvimento , Xanthomonas/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ouro/química , Ouro/farmacologia
15.
Eur J Med Chem ; 227: 113937, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710744

RESUMO

Evodiamine and rutaecarpine are two alkaloids isolated from traditional Chinese herbal medicine Evodia rutaecarpa, which have been reported to have various biological activities in past decades. To explore the potential applications for evodiamine and rutaecarpine alkaloids and their derivatives, various kinds of evodiamine and rutaecarpine derivatives were designed and synthesized. Their antifungal profile against six phytopathogenic fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Magnaporthe oryzae were evaluated for the first time. Furthermore, a series of modified imidazole derivatives of rutaecarpine were synthesized to investigate the structure-activity relationship. The results of antifungal activities in vitro showed that imidazole derivative of rutaecarpine A1 exhibited broad-spectrum inhibitory activities against R. solani, B. cinerea, F. oxysporum, S. sclerotiorum, M. oryzae and F. graminearum with EC50 values of 1.97, 5.97, 12.72, 2.87 and 16.58 µg/mL, respectively. Preliminary mechanistic studies showed that compound A1 might cause mycelial abnormalities of S. sclerotiorum, mitochondrial distortion and swelling, and inhibition of sclerotia formation and germination. Moreover, the curative effects of compound A1 were 94.7%, 81.5%, 80.8%, 65.0% at 400, 200, 100, 50 µg/mL in vivo experiments, which was far more effective than the positive control azoxystrobin. Significantly, no phytotoxicity of compound A1 on oilseed rape leaves was observed obviously even at a high concentration of 400 µg/mL. Therefore, compound A1 is expected to be a novel leading structure for the development of new antifungal agents.


Assuntos
Antifúngicos/farmacologia , Desenho de Fármacos , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Rhizoctonia/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Sensors (Basel) ; 21(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884073

RESUMO

Rhizoctonia root and crown rot (RRCR) is an important disease in sugar beet production areas, whose assessment and control are still challenging. Therefore, breeding for resistance is the most practical way to manage it. Although the use of spectroscopy methods has proven to be a useful tool to detect soil-borne pathogens through leaves reflectance, no study has been carried out so far applying near-infrared spectroscopy (NIRS) directly in the beets. We aimed to use NIRS on sugar beet root pulp to detect and quantify RRCR in the field, in parallel to the harvest process. For the construction of the calibration model, mainly beets from the field with natural RRCR infestation were used. To enrich the model, artificially inoculated beets were added. The model was developed based on Partial Least Squares Regression. The optimized model reached a Pearson correlation coefficient (R) of 0.972 and a Ratio of Prediction to Deviation (RPD) of 4.131. The prediction of the independent validation set showed a high correlation coefficient (R = 0.963) and a root mean square error of prediction (RMSEP) of 0.494. These results indicate that NIRS could be a helpful tool in the assessment of Rhizoctonia disease in the field.


Assuntos
Beta vulgaris , Rhizoctonia , Melhoramento Vegetal , Doenças das Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Açúcares
17.
Plant Dis ; 105(10): 3111-3117, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34752135

RESUMO

Rhizoctonia solani anastomosis group (AG) 2-2 can cause seedling damping-off in sugar beets and substantial losses may occur in all regions where beets are grown. Sugar beets are planted early in the season when soil temperatures are low in order to maximize the length of the growing season and minimize the risk of damping-off. However, predictive models that indicate there is little to no risk of Rhizoctonia damping-off at temperatures <15°C may not be entirely reliable. We tested this possibility by inoculating sugar beet seedlings in a growth chamber at 11°C with 35 R. solani AG 2-2 isolates that were representative of the genetic diversity present in AG 2-2. Although disease progress and growth rate were greatly reduced at 11°C, considerable disease symptoms did develop in inoculated plants. Three weeks after inoculation, 16% of the plants were dead and 77% of the isolates tested had average disease severity scores that were significantly greater than those of the mock inoculated control. This confirms our concern about the possibility for low-temperature infection of sugar beets and indicates that waiting until the soil warms up to above 15°C to apply fungicide could leave the crop at risk. Aggressiveness does not appear to be related to subgroup or growth rate but rather depends on the response of the specific isolate to low temperature.


Assuntos
Beta vulgaris , Rhizoctonia , Anastomose Cirúrgica , Doenças das Plantas , Plântula , Açúcares , Temperatura
18.
Nucleosides Nucleotides Nucleic Acids ; 40(12): 1159-1197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34612797

RESUMO

Novel and synthetically essential flavonoids compounds containing the organosulfur moiety from Schiff bases, as well as their copper complexes, were synthesized from chrysin and 2-(phenylthio)aniline. These complexes were characterized using elemental analysis, mass spectrometry, electronic absorption spectroscopy, IR, 1H, and 13C NMR spectroscopy techniques. All the Cu(II) complexes exhibit square planar geometry. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae and fungal species, Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola, and Candida albicans by serial dilution method. The DNA binding and DNA cleavage properties of copper complexes were studied. Free radical scavenging, superoxide dismutase, glutathione peroxidase, and antioxidant activities of the copper complexes have also been studied. In addition, using the egg albumin process, the in vitro anti-inflammatory efficacy of metal chelates was examined. Anti-tuberculosis and α-glucosidase inhibition activity were carried out from the prepared metal complexes. The flavonoid compounds containing the organosulfur moiety of Cu(II) complexes (1-8) exhibited better therapeutic agent.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/síntese química , Antioxidantes/química , Ascomicetos/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Bovinos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Clivagem do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Fusarium/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
19.
Sci Rep ; 11(1): 19027, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561493

RESUMO

In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM-EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extração Líquido-Líquido/métodos , Moringa oleifera/química , Papel , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agrobacterium tumefaciens/efeitos dos fármacos , Ácido Benzoico , Resistência Microbiana a Medicamentos , Erwinia amylovora/efeitos dos fármacos , Flavanonas , Fusarium/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Rhizoctonia/efeitos dos fármacos , Sementes , Ácido Vanílico
20.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3102-3105, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34467701

RESUMO

Trollius chinensis is a traditional Chinese medicinal material in China, the wild resource of T. chinensis are now exhausted, and commercial medicinal T. chinensis mainly depends on artificial cultivation. As one of the most severely happened diseases at the seedling period, damping off has been a serious threaten to the breeding of T. chinensis seedlings. However, no related research have been reported so far. So, the authors collected damping-off samples of T. chinensis in 2018 from seedling breeding nursery in Guyuan, Hebei province, and carried out study on taxonomic identification of the pathogen. Damping off occurs in the T. chinensis production area from mid-May to late June every year. At the beginning, brown lesions were observed on the basal stem, then the lesions circumferential expanded and constricted, and finally resulted in the fall and death of T. chinensis seedlings. Pathogenic isolate was growing rapidly on the PDA medium, well developed aerial mycelia were grey white at first, then turned brown gradually, and a great number of small dark brown sclerotia were developed in the middle and periphery of the colony. Mycelial diameter of the pathogen was about 7 to 10 µm, near right angle or acute angle branches, near branches with septa, branches and septa with constriction. After the healthy T. chinensis seedlings were inoculated by pathogenic isolate, damping-off was observed soon, and the symptom was as same as those observed in the field. Through homogenous blast, the rDNA-ITS sequence of the pathogenic isolate shown 99.49% to 99.84% homology with Rhizoctonia solani, R. solani AG-1 IC mycelium anastomosis group and Thanatephorus cucumeris, the sexual type of Rhizoctonia. Furthermore, obvious mycelial anastomosis phenomena were observed when the pathogenic isolate and R. solani AG-1 IC strain were confronting cultured. Based on the results above, the pathogenic isolate causing damping off of T. chinensis was identified as R. solani AG-1 IC mycelial anastomosis group. RESULTS:: in the present work have important significance for further research on basic biology of the pathogen and integrated control of damping off causing by it on T. chinensis.


Assuntos
Doenças das Plantas , Plântula , Basidiomycota , Melhoramento Vegetal , Rhizoctonia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA