Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Metab Eng ; 82: 274-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428730

RESUMO

Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.


Assuntos
Dissacarídeos , Glucose , Rhodiola , Glucose/genética , Glucose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Arabinose/metabolismo , Rhodiola/genética , Rhodiola/metabolismo , Xilose/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894905

RESUMO

Rhodiola rosea L. is a vulnerable species in the Altai Republic (AR) and Russia in general. For the first time on the territory of AR, studies of the adaptive capabilities of the species and genetic differentiation using ISSR markers were carried out in seven cenopopulations (CP) of R. rosea in 2018 and 2020. The research was founded on the notion of conducting a comparative analysis of the morphogenetic structure of Rhodiola rosea populations in various ecological and geographical conditions of AR. The aim of this work is to evaluate the variability of morphometric traits of sexually mature living female R. rosea plants and to conduct a comparative analysis of genetic variability in cenopopulations (CP) both under undisturbed conditions and under stressful conditions of anthropogenic impact (grazing). Of the 8 primers used, HB12 turned out to be the most informative. The percentage of polymorphic loci in the populations between 0 and 88%. Two populations, located in favorable conditions at relatively low absolute altitudes (2000 m above sea level) (masl) in the undisturbed habitats of the Katun and Altai reserves of AR, were characterized by higher polymorphism. The share of polymorphic loci reached 80%. According to the analysis of statistical data, the highest values of morphometric parameters of the aerial parts of R. rosea plants and the highest potential seed productivity were also recorded in these habitats. Representatives of two high-mountain CPs (2400-2500 masl) in the Sailyugemsky National Park (SNP) were characterized by the lowest genetic polymorphism. Their genetic structure is the most homogeneous, since we have not found polymorphic loci. Due to spatial isolation, these individuals are reliably genetically differentiated. In addition, individuals of one type were subjected to stressful anthropogenic impact (grazing). Therefore, the smallest sizes and lowest potential seed productivity were recorded. Our research shows that alpine populations of R. rosea in AR, under conditions of anthropogenic stress, need protection for their gene pool.


Assuntos
Crassulaceae , Rhodiola , Humanos , Rhodiola/genética , Rhodiola/química , Polimorfismo Genético , Federação Russa , Marcadores Genéticos , Extratos Vegetais
3.
Life Sci ; 308: 120949, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096243

RESUMO

AIMS: Rhodiola was found to be a potential treatment for nonalcoholic fatty liver disease (NAFLD). The macrophage migration inhibitory factor (MIF)-regulated lipophagy and lipid metabolism might be the therapeutic targets of Rhodiola. MAIN METHODS: A 16-week high-fat diet (HFD) was used to simulate a NAFLD mouse model. Rhodiola extract or normal saline were administrated to mice. Blood was collected to assess blood glucose and insulin, and livers were harvested to assess lipid accumulation and metabolism. In cell experiments, the active ingredient of Rhodiola, salidroside, and recombinant MIF protein (rMIF) were used to treat palmitate (PA)-incubated HepG2 cells, with MIF-siRNA or NC-siRNA transfection. Then, the level of lipophagy and lipid metabolism was examined. KEY FINDINGS: Rhodiola improved lipid accumulation and metabolism disorder of HFD mice. The oil red O staining of the liver showed that increased lipid droplets in the NAFLD liver could be relieved by Rhodiola; Rhodiola also alleviated the increasing body weight, liver weight, and HOMA-IR index of HFD mice. Results in cell experiments were consistent: salidroside relieved the lipid droplet accumulation and triglyceride release in PA cells, as well as reduced lipophagosome and lipid metabolism disorder in PA cells. However, all these effects of salidroside were partially blocked by MIF-siRNA transfection. SIGNIFICANCE: Rhodiola reduces lipid accumulation in the liver of NAFLD by facilitating the MIF pathway and the downstream lipophagy and lipid metabolism. MIF may be an endogenous regulator of liver lipophagy and lipid metabolism and a potential therapeutic target for NAFLD.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Hepatopatia Gordurosa não Alcoólica , Rhodiola , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Glucosídeos , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Palmitatos/farmacologia , Fenóis , Extratos Vegetais/uso terapêutico , RNA Interferente Pequeno/farmacologia , Rhodiola/genética , Rhodiola/metabolismo , Solução Salina/metabolismo , Solução Salina/farmacologia , Solução Salina/uso terapêutico , Triglicerídeos/metabolismo
4.
BMC Genomics ; 23(1): 577, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953771

RESUMO

BACKGROUND: As a valuable medicinal plant, Rhodiola has a very long history of folk medicine used as an important adaptogen, tonic, and hemostatic. However, our knowledge of the chloroplast genome level of Rhodiola is limited. This drawback has limited studies on the identification, evolution, genetic diversity and other relevant studies on Rhodiola. RESULTS: Six Rhodiola complete chloroplast genomes were determined and compared to another Rhodiola cp genome at the genome scale. The results revealed a cp genome with a typical quadripartite and circular structure that ranged in size from 150,771 to 151,891 base pairs. High similarity of genome organization, gene number, gene order, and GC content were found among the chloroplast genomes of Rhodiola. 186 (R. wallichiana) to 200 (R. gelida) SSRs and 144 pairs of repeats were detected in the 6 Rhodiola cp genomes. Thirteen mutational hotspots for genome divergence were determined and could be used as candidate markers for phylogenetic analyses and Rhodiola species identification. The phylogenetic relationships inferred by members of Rhodiola cluster into two clades: dioecious and hermaphrodite. Our findings are helpful for understanding Rhodiola's taxonomic, phylogenetic, and evolutionary relationships. CONCLUSIONS: Comparative analysis of chloroplast genomes of Rhodiola facilitates medicinal resource conservation, phylogenetic reconstruction and biogeographical research of Rhodiola.


Assuntos
Genoma de Cloroplastos , Rhodiola , Composição de Bases , Marcadores Genéticos , Filogenia , Rhodiola/genética
5.
Gene ; 836: 146672, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35714804

RESUMO

Rhodiola imbricata (Crassulaceae) is a traditional trans-Himalayan endangered medicinal herb with immense therapeutic applications. Over the years, over-exploitation, un-managed harvesting, and lack of captive cultivation procedures persuaded threat to its wild habitat. Plant tissue culture and RNA-Seq-based molecular bioprospection of key regulatory genes aid the understanding of molecular dynamics involved in specialized metabolites (phenylethanoids and phenylpropanoids) biosynthesis and its sustainable production. Hence, comparative transcriptomic analysis was performed using leaf and root tissues from the wild and tissue-cultured plants, revealing tissue-specific production of salidroside and rosavin. The transcriptome profiling resulted in 345 million high-quality reads yielding 92,380 unique transcripts with an N50 of 1260 bp. Tissue-specific gene expression analysis revealed that both phenylethanoids and phenylpropanoids biosynthesis are predominantly associated with the shikimate pathway. In addition to RNA-Seq data, the downstream biosynthesis pathways genes viz., phospho-2-dehydro-3-deoxyheptonate aldolase (DAHPS), 3-dehydroquinate synthase (DHQS), shikimate kinase (SK), chorismate mutase (CM), arogenate dehydrogenase (TYRAAT), aromatic-L-amino-acid decarboxylase (TDC), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4-CL), cinnamoyl-CoA reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD) showed higher expression pattern in wild plant tissues compared to tissue-cultured plants. The transcript fold expression determined by RT-qPCR results followed similar patterns as those observed in RNA-seq and targeted metabolite profiling data. Salidroside and rosavin content in wild plants exhibited 2.40 fold and 1.77 fold increase accumulation compared to the tissue-cultured plant. The present investigation explained the tissue and condition-specific significant differences between the expression of proposed biosynthetic pathway genes and salidroside and rosavin content. Additionally, NAC, bHLH, and ARF were the most abundant transcription factor families found in the transcriptomic analysis of R. imbricata. The generated transcriptome dataset provides a valuable gene(s)/transcription factors hub that can be used for the sustainable production of salidroside and rosavin in R. imbricata under tissue culture conditions.


Assuntos
Rhodiola , Perfilação da Expressão Gênica , Fenilalanina Amônia-Liase/genética , Folhas de Planta/genética , Rhodiola/genética , Rhodiola/metabolismo , Transcriptoma/genética
6.
Int J Biol Macromol ; 136: 847-858, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226374

RESUMO

Roseroot (Rhodiola rosea L.) is a medicinal plant with adaptogenic properties and several pharmaceutically important metabolites. In this study, a full length cDNA encoding a UDPG gene of roseroot was identified, cloned and characterized. Its ORF (1425 bp) was transferred into E. coli, where the expression of the recombinant enzyme was confirmed. To monitor the enzyme activity, 3 precursors (tyramine, 4-hydroxyphenylpyruvate & tyrosol) of salidroside biosynthesis pathway were added to roseroot callus cultures and samples were harvested after 1, 6, 12, 24, 48 & 96 h. Along with the controls (without precursor feeding), each sample was subjected to HPLC and qRT-PCR for phytochemical and relative UDP-glycosyltransferase gene expression analysis, respectively. The HPLC analysis showed that the salidroside content significantly increased; reaching 0.5% of the callus dry weight (26-fold higher than the control) after 96 h when 2 mM tyrosol was given to the media. The expression of the UDP-glycosyltransferase increased significantly being the highest at 12 h after the feeding. The effect of tyramine and 4-hydroxyphenylpyruvate was not as pronounced as of tyrosol. Here, we introduce a R. rosea specific UDPG gene and its expression pattern after biotransformation of intermediate precursors in in vitro roseroot callus cultures.


Assuntos
Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Rhodiola/enzimologia , Rhodiola/genética , Difosfato de Uridina/metabolismo , Biotransformação , Técnicas de Cultura , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Filogenia , Rhodiola/crescimento & desenvolvimento
7.
J Pharm Biomed Anal ; 149: 403-409, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29154110

RESUMO

Siberian ginseng (Eleutherococcus senticosus, Araliaceae) and roseroot (Rhodiola rosea, Rosaceae) are popular herbal supplements which have been shown to improve resilience to conditions such as stress and exhaustion. Using DNA barcoding methods we tested 25 Siberian ginseng and 14 roseroot products which are widely available to UK customers to test whether the herbal ingredient stated on the label is also in the product. All Siberian ginseng supplements contained E. senticosus, however, 36% also contained an Eleutherococcus species other than E. senticosus. In three out of the 13 roseroot products which produced amplifiable DNA, we could only retrieve sequences matching alfalfa (declared on the product label) and fenugreek (not declared). In the other 10 supplements Rhodiola was detected but only five matched the target species R. rosea. As DNA can get severely degraded during the manufacturing process we did not take the absence of Rhodiola DNA as proof for a compromised product. Contamination could explain the presence of non-target species such as fenugreek but is unlikely to be account for the detection of congeneric Rhodiola species in roseroot preparations. Our results therefore suggest that the substitution or mixing of the target medicinal ingredient in these two popular supplements with other species is common.


Assuntos
Suplementos Nutricionais/análise , Eleutherococcus/química , Contaminação de Alimentos/análise , Rotulagem de Alimentos , Rhodiola/química , Código de Barras de DNA Taxonômico , Suplementos Nutricionais/normas , Eleutherococcus/genética , Medicago sativa/química , Medicago sativa/genética , Filogenia , Rhodiola/genética , Trigonella/química , Trigonella/genética , Reino Unido
8.
Mol Plant ; 11(1): 205-217, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29277428

RESUMO

Salidroside is a bioactive tyrosine-derived phenolic natural product found in medicinal plants under the Rhodiola genus. In addition to their anti-fatigue and anti-anoxia roles in traditional medicine, Rhodiola total extract and salidroside have also displayed medicinal properties as anti-cardiovascular diseases and anti-cancer agents. The resulting surge in global demand of Rhodiola plants and salidroside has driven some species close to extinction. Here, we report the full elucidation of the Rhodiola salidroside biosynthetic pathway utilizing the first comprehensive transcriptomics and metabolomics datasets for Rhodiola rosea. Unlike the previously proposed pathway involving separate decarboxylation and deamination enzymatic steps from tyrosine to the key intermediate 4-hydroxyphenylacetaldehyde (4-HPAA), Rhodiola contains a pyridoxal phosphate-dependent 4-HPAA synthase that directly converts tyrosine to 4-HPAA. We further identified genes encoding the subsequent 4-HPAA reductase and tyrosol:UDP-glucose 8-O-glucosyltransferase, respectively, to complete salidroside biosynthesis in Rhodiola. We show that heterologous production of salidroside can be achieved in the yeast Saccharomyces cerevisiae as well as the plant Nicotiana benthamiana through transgenic expression of Rhodiola salidroside biosynthetic genes. This study provides new tools for engineering sustainable production of salidroside in heterologous hosts.


Assuntos
Rhodiola/metabolismo , Acetaldeído/metabolismo , Glucosídeos/metabolismo , Fenóis/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhodiola/genética , Saccharomyces cerevisiae/metabolismo
9.
Sci Rep ; 7(1): 10051, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855685

RESUMO

The roots and rhizomes of Rhodiola crenulata and R. rosea have been used worldwide as adaptogens for hundreds of years. However, rapid growth in demand has resulted in merchants using other species of Rhodiola as adulterants. Here, we surveyed 518 individuals representing 47 of the 55 species in the genus, including 253 R. crenulata individuals from 16 populations and 98 R. rosea individuals from 11 populations, to evaluate the utility of the internal transcribed spacer 2 (ITS2) barcode for identification of Rhodiola species. We detected six haplotypes in R. crenulata and only one haplotype in R. rosea. An obvious overlap between intra- and inter-specific distance was detected, and the authentication efficacy of ITS2, which was assessed by BLAST1, a nearest distance method, and a tree test, was much lower than in other groups. However, R. crenulata and R. rosea could be exactly identified. Analysis showed that the secondary structure of ITS2 differs in R. crenulata and its closest relatives. Our results demonstrated that both a mini barcode from ITS2 and the structure of ITS2 are effective markers for the identification of R. crenulata and R. rosea. This study represents the most comprehensive database of ITS2 barcodes in Rhodiola to date and will be useful in Rhodiola species identification.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , DNA de Plantas/genética , Filogenia , Rhodiola/genética , China , DNA Intergênico/classificação , DNA de Plantas/classificação , Haplótipos , Humanos , Conformação de Ácido Nucleico , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/genética , Plantas Medicinais , Rizoma/química , Rizoma/genética , Rhodiola/classificação
10.
Gigascience ; 6(6): 1-5, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475810

RESUMO

Rhodiola crenulata, a well-known medicinal Tibetan herb, is mainly grown in high-altitude regions of the Tibet, Yunnan, and Sichuan provinces in China. In the past few years, increasing numbers of studies have been published on the potential pharmacological activities of R. crenulata, strengthening our understanding into its putitive active ingredient composition, pharmacological activity, and mechanism of action. These findings also provide strong evidence supporting the important medicinal and economical value of R. crenulata. Consequently, some Rhodiola species are becoming endangered because of overexploitation and environmental destruction. However, little is known about the genetic and genomic information of any Rhodiola species. Here we report the first draft assembly ofthe R. crenulata genome, which was 344.5 Mb (25.7 Mb Ns), accounting for 82% of the estimated genome size, with a scaffold N50 length of 144.7 kb and a contig N50 length of 25.4 kb. The R. crenulata genome is not only highly heterozygous but also highly repetitive, with ratios of 1.12% and 66.15%, respectively, based on the k-mer analysis. Furthermore, 226.6 Mb of transposable elements were detected, of which 77.03% were long terminal repeats. In total, 31 517 protein-coding genes were identified, capturing 86.72% of expected plant genes in BUSCO. Additionally, 79.73% of protein-coding genes were functionally annotated. R. crenulata is an important medicinal plant and also a potentially interesting model species for studying the adaptability of Rhodiola species to extreme environments. The genomic sequences of R. crenulata will be useful for understanding the evolutionary mechanism of the stress resistance gene and the biosynthesis pathways of the different medicinal ingredients, for example, salidroside in R. crenulata.


Assuntos
Genoma de Planta , Rhodiola/genética , Análise de Sequência de DNA/métodos , Elementos de DNA Transponíveis , Tamanho do Genoma , Medicina Tradicional Tibetana , Anotação de Sequência Molecular
11.
Biomed Res Int ; 2016: 9845927, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597978

RESUMO

Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (K M and V max), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.


Assuntos
Glucosídeos/biossíntese , Glicosiltransferases/biossíntese , Rhodiola/genética , Sequência de Aminoácidos/genética , Catálise , Códon/genética , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Glucosídeos/genética , Glicosiltransferases/genética , Fenóis
12.
Genet Mol Res ; 15(4)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28081284

RESUMO

Rhodiola plants are a valuable resource in traditional Chinese medicine. The objective of this study was to evaluate the correlation between ribosomal DNA internal transcribed spacer (ITS) sequences and the three active components in Rhodiola plants. For this, we determined ITS sequence polymorphisms and the concentrations of active components salidroside, tyrosol, and gallic acid in different Rhodiola species from the Tibetan Plateau. In a total of 23 Rhodiola samples, 16 different haplotypes were defined based on their ITS sequences. Analysis of the active components in these same samples revealed that salidroside was not detected in species with haplotypes H4, H5, or H10, tyrosol was not detected with haplotypes H3, H5, H7, H10, H14, or H15, and gallic acid was detected in with all haplotypes except H14 and H15. In addition, the concentrations of salidroside, tyrosol and gallic acid varied between samples with different haplotypes as well as those with the same haplotype, implying that no significant correlation exists between haplotype and salidroside, tyrosol or gallic acid concentrations. However, a statistically significant positive correlation was observed for among these three active components.


Assuntos
DNA Espaçador Ribossômico , Metaboloma , Rhodiola/genética , Rhodiola/metabolismo , Haplótipos , Metabolômica , Polimorfismo Genético
13.
Genet Mol Res ; 14(2): 5266-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26125721

RESUMO

Rhodiola alsia, which has been used widely in traditional Chinese medicine for a considerable time, grows on moist habitats at high altitude near the snow line. Microsatellite loci were developed for R. alsia to investigate its population genetics. In total, 17 polymorphic microsatellites were developed based on ESTs from the Illumina HiSeq(TM) 2000 platform. The microsatellite loci were checked for variability using 80 individuals of R. alsia sampled from four locations on the Qinghai-Tibet Plateau. The total number of alleles per locus ranged from 10 to 20, and the observed heterozygosity ranged from 0.000 to 1.000. The null allele frequency ranged from 0.000 to 0.324. These microsatellites are expected to be helpful in future studies of population genetics in R. alsia and related species.


Assuntos
Repetições de Microssatélites/genética , Plantas Medicinais/genética , Rhodiola/genética , Alelos , Humanos , Medicina Tradicional Tibetana , Polimorfismo Genético , Tibet
14.
PLoS One ; 10(3): e0119921, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774915

RESUMO

DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences - rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) - for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.


Assuntos
Filogenia , Plantas Medicinais/genética , Rhodiola/genética , Sequência de Bases , Código de Barras de DNA Taxonômico , Dados de Sequência Molecular , Plantas Medicinais/classificação , Rhodiola/classificação , Tibet
15.
Sci Rep ; 5: 8337, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25661009

RESUMO

The adulteration of herbal products is a threat to consumer safety. Here we surveyed the species composition of commercial Rhodiola products using DNA barcoding as a supervisory method. A Rhodiola dietary supplement DNA barcode database was successfully constructed using 82 voucher samples from 10 Rhodiola species. Based on the DNA barcoding standard operating procedure (SOP), we used this database to identify 100 Rhodiolae Crenulatae Radix et Rhizoma decoction piece samples that were purchased from drug stores and hospitals. The results showed that only 36 decoction piece sequences (40%) were authentic R. crenulata, which is recorded in Chinese Pharmacopeia, whereas the other samples were all adulterants and may indicate a potential safety issue. Among the adulterants, 35 sequences (38.9%) were authenticated as R. serrata, nine sequences (10%) were authenticated as R. rosea, which is documented in the United States Pharmacopeia, and the remaining samples were authenticated as other three Rhodiola species. This result indicates decoction pieces that are available in the market have complex origins and DNA barcoding is a convenient tool for market supervision.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Medicamentos de Ervas Chinesas/análise , Rhodiola/genética , DNA de Plantas/análise
16.
Gene ; 553(2): 90-7, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281820

RESUMO

Transcriptome sequencing is a powerful tool for the assessment of gene expression and the identification and characterization of molecular markers in non-model organisms. Rhodiola algida L. (Crassulaceae), endemic to the Qinghai-Tibetan Plateau, has long been used in traditional Chinese medicine to prevent altitude sickness and eliminate fatigue. Illumina-based high-throughput transcriptome sequencing of aboveground and underground tissues of R. algida respectively yielded 5.40 million and 5.18 million clean reads. A total of 82,664 unigenes averaging 577 bp in length were generated from the aboveground clean reads, with 86,237 unigenes of 502-bp mean length obtained from the underground tissues. Of 55,028 unigenes compared with sequences in UniProt databases, 20,413 unigenes had significant similarities with existing sequences in NR, NT, Swiss-Prot, GO, KEGG, and COG databases. Single nucleotide polymorphism (SNP) analysis identified 237,294 SNPs from 154,636 contigs of aboveground tissues and 197,540 SNPs from 144,963 underground-derived contigs. The information uncovered in this study should serve as a valuable resource for the characterization of important traits related to secondary metabolite formation and for the identification of associated molecular mechanisms.


Assuntos
Genes de Plantas , Plantas Medicinais/genética , Rhodiola/genética , Transcriptoma , Polimorfismo de Nucleotídeo Único , Tibet
17.
Plant Cell Rep ; 30(8): 1443-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538102

RESUMO

Salidroside, the 8-O-ß-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.


Assuntos
Glucosídeos/biossíntese , Rhodiola/enzimologia , Tirosina Descarboxilase/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Clonagem Molecular , DNA Antissenso/genética , DNA Complementar/genética , DNA de Plantas/genética , Dados de Sequência Molecular , Fenóis , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Rhodiola/genética , Análise de Sequência de DNA
18.
Phytochemistry ; 72(9): 862-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21497865

RESUMO

Salidroside, the 8-O-ß-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by biotechnological manipulations. In this study, two putative UDP-glycosyltransferase (UGT) cDNAs, UGT72B14 and UGT74R1, were isolated from roots and cultured cells of methyl jasmonate (MeJA)-treated R. sachalinensis, respectively. The level of sequence identity between their deduced amino acid sequences was ca. 20%. RNA gel-blot analysis established that UGT72B14 transcripts were more abundant in roots, and UGT74R1 was highly expressed in the calli, but not in roots. Functional analysis indicated that recombinant UGT72B14 had the highest level of activity for salidroside production, and that the catalytic efficiency (Vmax/Km) of UGT72B14 was 620% higher than that of UGT74R1. The salidroside contents of the UGT72B14 and UGT74R1 transgenic hairy root lines of R. sachalinensis were also ∼420% and ∼50% higher than the controls, respectively. UGT72B14 transcripts were mainly detected in roots, and UGT72B14 had the highest level of activity for salidroside production in vitro and in vivo.


Assuntos
Glucosídeos/biossíntese , Glicosiltransferases/metabolismo , Rhodiola/enzimologia , Acetatos , Ciclopentanos , Glicosiltransferases/genética , Oxilipinas , Fenóis , Filogenia , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Proteínas Recombinantes/metabolismo , Rhodiola/genética
19.
Zhongguo Zhong Yao Za Zhi ; 35(14): 1783-8, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20939266

RESUMO

OBJECTIVE: To acquire homozygous tetraploid germplasm of Rhodiola sachalinensis. METHOD: PEG-mediated protoplast fusions were conducted using callus of Rh. sachalinensis as materials. Protoplast fusion products were embedded and cultured in low-density, low-melting-point agar and marked according to the protoplast size, and single-celled sister lines were established to acquire genetically homozygous tetraploid germplasm. RESULT: R(D) and R(M) of newborn daughter cells or protoplasm, metaphase cells or protoplasm were approximately in line with the formula R(D) = 0.793 7R(M). The change range in diameter of the diploid cells without fusion, two protoplasts fusion product were: 16.7 microm < or = R < 21.3 microm, 21.0 microm < or = R' < 26.8 microm respectively. There is an overlap between the two diameter ranges. The protoplast inoculation density of 1 x 10(4) cells x mL(-1) was appropriate when protoplasts were anchored by low-intensity, low-melting-point agar. Under the conditions of this density, plating efficiency was high and single cell origin of the sister lines microclones grew rapidly, and it was easy to mark the single cell microclones, and separate from each other to subculture. The chromosome counts results showed that chromosome numbers of diploid and tetraploid of single cell lines were 26 and 52, respectively. The result from flow cytometry assay showed that there is no presence of chimerism in single-cell regeneration plantlets. CONCLUSION: The results of this study provide a scientific basis for polyploid breeding of Rh. sachalinensis.


Assuntos
Fusão Celular/métodos , Polietilenoglicóis/farmacologia , Poliploidia , Protoplastos/citologia , Rhodiola/genética , Protoplastos/efeitos dos fármacos , Rhodiola/citologia , Rhodiola/efeitos dos fármacos
20.
Pharmazie ; 65(8): 618-23, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20824964

RESUMO

Roseroot, Rhodiola rosea, is a perennial herbaceous plant of the family Crassulaceae. The rhizomes of 95 roseroot clones in the Norwegian germplasm collection were analysed and quantified for their content of the bioactive compounds rosavin, salidroside, rosin, cinnamyl alcohol and tyrosol using HPLC analysis. All five bioactive compounds were detected in all 95 roseroot clones but in highly variable quantities. The ranges observed for the different compounds were for rosavin 2.90-85.95 mg g(-1), salidroside 0.03-12.85 mg g(-1), rosin 0.08-4.75 mg g(-1), tyrosol 0.04-2.15 mg g(-1) and cinnamyl alcohol 0.02-1.18 mg g(-1). The frequency distribution of the chemical content of each clone did not reflect a certain geographic region of origin or the gender of the plant. Significant correlations were found for the contents of several of these bioactive compounds in individual roseroot clones. A low, but not significant correlation was found between AFLP markers previously used to study the genetic diversity of the roseroot clones and their production of the chemical compounds. The maximum level of rosavin, rosin and salidroside observed were higher than for any roseroot plant previously reported in literature, and the roseroot clones characterized in this study might therefore prove to be of high pharmacological value.


Assuntos
Bancos de Espécimes Biológicos , Rhodiola/química , Cromatografia Líquida de Alta Pressão , Células Clonais/química , Análise por Conglomerados , Noruega , Fitoterapia , Raízes de Plantas/química , Rhodiola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA