Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 296-306, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417646

RESUMO

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA , Ribonucleoproteínas/genética , Lactatos , Glucose , Neoplasias/genética , Neoplasias/terapia
2.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092553

RESUMO

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Puberdade Precoce , Humanos , Feminino , Camundongos , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipotálamo/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
J Virol ; 97(4): e0182922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943056

RESUMO

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Assuntos
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virais , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Quaternária de Proteína , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microscopia Crioeletrônica , Suramina/farmacologia
4.
Biomaterials ; 279: 121233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749073

RESUMO

Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cobre , Imunoterapia , Camundongos , Neoplasias/terapia , Fototerapia , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Ribonucleoproteínas , Sulfetos
5.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343498

RESUMO

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Assuntos
Antioxidantes/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Selênio/farmacologia , Selenoproteína W/metabolismo , Células Th1/citologia , Diferenciação Celular/imunologia , Polaridade Celular , Colo/imunologia , Colo/patologia , Glicina Hidroximetiltransferase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Células Th1/imunologia , Ubiquitina-Proteína Ligases/metabolismo
6.
Small ; 17(33): e2101155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34269521

RESUMO

Manipulation of CRISPR delivery for stimuli-responsive gene editing is crucial for cancer therapeutics through maximizing efficacy and minimizing side-effects. However, realizing controlled gene editing for synergistic combination therapy remains a key challenge. Here, a near-infrared (NIR) light-triggered thermo-responsive copper sulfide (CuS) multifunctional nanotherapeutic platform is constructed to achieve controlled release of CRISPR-Cas9 ribonucleoprotein (RNP) and doxorubicin for tumor synergistic combination therapy involving in gene therapy, mild-photothermal therapy (PTT), and chemotherapy. The semiconductor CuS serves as a "photothermal converter" and can stably convert NIR light (808 nm) into local thermal effect to provide photothermal stimulation. The double-strand formed between CuS nanoparticle-linked DNA fragments and single-guide RNA is employed as a controlled element in response to photothermal stimulation for controlled gene editing and drug release. Hsp90α, one subunit of heat shock protein 90 (Hsp90), is targeted by Cas9 RNP to reduce tumor heat tolerance for enhanced mild-PTT effects (≈43 °C). Significant synergistic therapy efficacy can be observed by twice NIR light irradiation both in vitro and in vivo, compared to PTT alone. Overall, this exogenously controlled method provides a versatile strategy for controlled gene editing and drug release with potentially synergistic combination therapy.


Assuntos
Nanopartículas , Fototerapia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cobre , Doxorrubicina , Terapia Fototérmica , Ribonucleoproteínas
7.
Trends Pharmacol Sci ; 42(9): 758-771, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34215444

RESUMO

The past few years have witnessed important breakthroughs in the identification of compounds that specifically bind and regulate RNAs and in optimizing them for therapeutic use. Here, we review successful and unsuccessful approaches in screening for RNA-targeted small molecules. We discuss advantages and disadvantages of the different screening techniques and variables that affect the outcome of RNA-screening projects. We also highlight key challenges that hamper the development of quality RNA ligands, especially the still-low availability of RNA-specific compound libraries and the poor understanding of RNA structural dynamics. We conclude that the development of new RNA-targeting drugs would greatly benefit from integration of the power of high-throughput screening technologies with improved biochemical, structural, and computational characterization of RNA targets.


Assuntos
Avaliação Pré-Clínica de Medicamentos , RNA , Ribonucleoproteínas , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Bibliotecas de Moléculas Pequenas
8.
Biochem Biophys Res Commun ; 528(1): 140-145, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451083

RESUMO

The membraneless messenger ribonucleoprotein (mRNP) granules, including processing bodies (PBs) and stress granules (SGs), are important cytoplasmic structures in eukaryotes that can participate in gene expression through mRNA regulation. It has been verified that mRNP granules are mainly composed of proteins and translation-repressed mRNAs. Here, we reported a stop-codon read-through gene, At3g52980, in plants for the first time. At3g52980 encodes a novel non-tandem CCCH zinc-finger (non-TZF) protein named AtC3H18-Like (AtC3H18L), which contains two putative RNA-binding domains. By using transient expression system, we showed that heat treatment can induce the aggregation of diffuse distributed AtC3H18L to form cytoplasmic foci, which were similar to PBs and SGs in morphology. Further analysis did find that AtC3H18L can co-localize with markers of PB and SG. The aggregation of AtC3H18L was closely related to the cytoskeleton, and AtC3H18L-foci were highly dynamic and can move frequently along cytoskeleton. Moreover, analysis in transgenic plants showed that AtC3H18L was specifically expressed in pollen and can form cytoplasmic foci without heat treatment. It will be fascinating in future studies to discover whether and how AtC3H18L affects pollen development by participating in the assembly of mRNP granules as a protein component, especially under heat stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Códon de Terminação/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Dedos de Zinco , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Inflorescência/metabolismo , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Pólen/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Frações Subcelulares/metabolismo , Nicotiana/genética
9.
Hum Mol Genet ; 29(12): 1969-1985, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32068834

RESUMO

Vitamin B12 or cobalamin (Cbl) metabolism can be affected by genetic defects leading to defective activity of either methylmalonyl-CoA mutase or methionine synthase or both enzymes. Patients usually present with a wide spectrum of pathologies suggesting that various cellular processes could be affected by modifications in gene expression. We have previously demonstrated that these genetic defects are associated with subcellular mislocalization of RNA-binding proteins (RBP) and subsequent altered nucleo-cytoplasmic shuttling of mRNAs. In order to characterize the possible changes of gene expression in these diseases, we have investigated global gene expression in fibroblasts from patients with cblC and cblG inherited disorders by RNA-seq. The most differentially expressed genes are strongly associated with developmental processes, neurological, ophthalmologic and cardiovascular diseases. These associations are consistent with the clinical presentation of cblC and cblG disorders. Multivariate analysis of transcript processing revaled splicing alterations that led to dramatic changes in cytoskeleton organization, response to stress, methylation of macromolecules and RNA binding. The RNA motifs associated with this differential splicing reflected a potential role of RBP such as HuR and HNRNPL. Proteomic analysis confirmed that mRNA processing was significantly disturbed. This study reports a dramatic alteration of gene expression in fibroblasts of patients with cblC and cblG disorders, which resulted partly from disturbed function of RBP. These data suggest to evaluate the rescue of the mislocalization of RBP as a potential strategy in the treatment of severe cases who are resistant to classical treatments with co-enzyme supplements.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Oxirredutases/genética , Deficiência de Vitamina B 12/genética , Vitamina B 12/genética , Processamento Alternativo/genética , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Proteômica , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia
10.
Antiviral Res ; 173: 104667, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786250

RESUMO

The mammarenavirus Lassa (LASV) is highly prevalent in West Africa where it infects several hundred thousand individuals annually resulting in a high number of Lassa fever (LF) cases, a febrile disease associated with high morbidity and significant mortality. Mounting evidence indicates that the worldwide-distributed prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. There are not Food and Drug Administration (FDA) licensed vaccines and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that is only partially effective and can cause significant side effects. Therefore, there is an unmet need for novel antiviral drugs to combat LASV. This task would be facilitated by the implementation of high throughput screens (HTS) to identify inhibitors of the activity of the virus ribonucleoprotein (vRNP) responsible for directing virus RNA genome replication and gene transcription. The use of live LASV for this purpose is jeopardized by the requirement of biosafety level 4 (BSL4) containment. We have developed a virus-free cell platform, where expression levels of reporter genes serve as accurate surrogates of vRNP activity, to develop cell-based assays compatible with HTS to identify inhibitors of LASV and LCMV mammarenavirus vRNP activities.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus Lassa/efeitos dos fármacos , Ribonucleoproteínas/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Expressão Gênica , Engenharia Genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferência de RNA , Reprodutibilidade dos Testes , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Bibliotecas de Moléculas Pequenas , Células Vero
11.
Assay Drug Dev Technol ; 17(3): 116-127, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30901265

RESUMO

Fibrosis is defined by excessive production of type I collagen in various organs. Excessive type I collagen production in fibrosis is stimulated by binding of RNA protein LARP6 to the structural element of collagen mRNAs, the 5' stem loop (5'SL). The LARP6-dependent regulation is specific for type I collagen and critical for fibrosis development. Inhibitors of LARP6 binding have potential to be specific antifibrotic drugs, as evidenced by the discovery of one such inhibitor. To create technology for phenotypic screening of additional compounds we developed an inverted yeast three hybrid system. The system is based on expression of human LARP6 and a short RNA containing the 5'SL of human collagen α1(I) mRNA in Saccharomyces cerevisiae cells. The cells were engineered in such a way that when LARP6 is bound to 5'SL RNA they fail to grow in a specific synthetic medium. Dissociation of LARP6 from 5'SL RNA permits the cell growth, allowing identification of the inhibitors of LARP6 binding. The assay simply involves measuring optical density of cells growing in multiwall plates and is pertinent for high throughput applications. We describe the specificity of the system and its characteristics for high throughput screening. As a proof of principle, the result of one screen using collection of FDA approved drugs is also presented. This screen demonstrates that using this technology discovery of novel LARP6 inhibitors is possible.


Assuntos
Descoberta de Drogas , Ribonucleoproteínas/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Autoantígenos/biossíntese , Engenharia Celular , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Ribonucleoproteínas/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Antígeno SS-B
12.
Inflammopharmacology ; 27(6): 1255-1263, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30783895

RESUMO

Influenza viruses can bring about acute respiratory diseases and are a potential hazard to human health. Antiviral drugs are the main ways to control the influenza virus infection except the vaccine. In this study, the immune regulation activity of pterodontic acid isolated from Laggera pterodonta induced by influenza A virus in vitro was evaluated. In studies on anti-influenza activity, our results showed that it maybe target the influenza protein of polymerase basic 1 (PB1), polymerase basic 2 (PB2), polymerase acid (PA), nuclear protein (NP), non-structural protein (NS), and matrix protein (M) but not hemagglutinin (HA) and neuraminidase (NA). In studies on immune regulation, our results demonstrated that pterodontic acid can inhibit the Retinoic acid inducible gene-I (RIG-I) expression in mRNA and protein level at 100 µg/ml, then further to clarify its action on the signalling pathway, The results indicated that pterodontic acid can inhibit the Tumor Necrosis Factor-related Apoptosis-inducing Ligand/Fas Ligand (TRAIL/Fasl) expression in mRNA level at 100 µg/ml; the cleaved caspase 3/7, p-NF-KB, and p-ERK were all suppressed in protein level by pterodontic acid at 100 µg/ml. This confirmed its mechanism that restrained the nuclear export of viral RNPs. The interferon system was also affected, the STAT1, IFN-α, IFN-ß expression were also inhibited by pterodontic acid at 25-100 µg/ml and also, the important programmed death-ligand of PD-L1 and PD-L2 was inhibited at 50-100 µg/ml. The mechanisms of pterodontic acid against influenza virus infection may be a cascade inhibition and it has the anti-inflammatory activity, which has no side effect, and can be as a supplement drug in clinical influenza virus infection.


Assuntos
Antivirais/farmacologia , Asteraceae/química , Antígeno B7-H1/fisiologia , Proteína DEAD-box 58/antagonistas & inibidores , Vírus da Influenza A/efeitos dos fármacos , Interferon Tipo I/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Proteína 2 Ligante de Morte Celular Programada 1/antagonistas & inibidores , Sesquiterpenos/farmacologia , Células A549 , Antígeno B7-H1/antagonistas & inibidores , Humanos , Vírus da Influenza A/fisiologia , Proteína 2 Ligante de Morte Celular Programada 1/fisiologia , Receptores Imunológicos , Ribonucleoproteínas/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores
13.
Sci Rep ; 9(1): 326, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674965

RESUMO

Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fibrosis is augmented by binding of protein LARP6 to the 5' stem-loop structure (5'SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5'SL, as potential antifibrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5' SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fibrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fibrosis, C9 attenuated the profibrotic response at 1 µM. In prophylactic and therapeutic animal models of hepatic fibrosis C9 prevented development of fibrosis or hindered the progression of ongoing fibrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal off target effects. Based on these results, C9 represents the first LARP6 inhibitor with significant antifibrotic activity.


Assuntos
Colágeno Tipo I/metabolismo , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Ribonucleoproteínas/antagonistas & inibidores , Animais , Autoantígenos , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/uso terapêutico , Humanos , Modelos Biológicos , Ratos Wistar , Resultado do Tratamento , Antígeno SS-B
14.
Plant Physiol ; 178(1): 258-282, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007911

RESUMO

Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.


Assuntos
Perfilação da Expressão Gênica/métodos , Pólen/genética , Pólen/metabolismo , Proteômica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
15.
Physiol Plant ; 164(4): 378-384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29572864

RESUMO

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.4.1.242). The RNP method was directly implemented using previously developed protoplast isolation, transfection and regeneration protocols without further adjustments. Cas9 protein was preassembled with RNA produced either synthetically or by in vitro transcription. RNP with synthetically produced RNA (cr-RNP) induced mutations, i.e. indels, at a frequency of up to 9%, with all mutated lines being transgene-free. A mutagenesis frequency of 25% of all regenerated shoots was found when using RNP with in vitro transcriptionally produced RNA (IVT-RNP). However, more than 80% of the shoots with confirmed mutations had unintended inserts in the cut site, which was in the same range as when using DNA delivery. The inserts originated both from DNA template remnants from the in vitro transcription, and from chromosomal potato DNA. In 2-3% of the regenerated shoots from the RNP-experiments, mutations were induced in all four alleles resulting in a complete knockout of the GBSS enzyme function.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Ribonucleoproteínas/genética , Solanum tuberosum/genética , Protoplastos/metabolismo
16.
World J Urol ; 36(7): 1073-1078, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29492585

RESUMO

OBJECTIVE: To study the expression of YRNAs (Ro-associated Y), a novel class of non-coding RNAs, in prostate cancer (PCA) patients. METHODS: The expression of all four YRNAs (RNY1, RNY3, RNY4, RNY5) was determined in archival PCA (prostate adenocarcinoma, n = 56), normal (n = 36) and benign prostatic hyperplasia (BPH; n = 28) tissues using quantitative real-time PCR. Associations with clinicopathological parameters and prognostic role for biochemical recurrence-free survival were analysed. RESULTS: All YRNAs were significantly downregulated in PCA tissue compared to normal tissue (all YRNAs) and to BPH tissue (RNY4 and RNY5; RNY1 and RNY3 as trend). Among tumor ISUP grade groups, the most prominent differences in the expression were evident between groups 1 and 2 (RNY1, RNY3 und RNY4; all p < 0.05). Discrimination ability for normal/BPH tissue versus tumor tissue in ROC analysis (area under curve) was ranging from 0.658 (RNY1) to 0.739 (RNY4). Higher RNY5 expression was associated with poor prognosis (biochemical recurrence-free survival). CONCLUSION: The expression of YRNAs is altered in PCA and associated with poor prognosis (RNY5). Possible diagnostic role of YRNAs in prostate cancer should be investigated in further studies.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Próstata/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/mortalidade , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/mortalidade , Ressecção Transuretral da Próstata
18.
J Med Chem ; 60(23): 9437-9447, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28657735

RESUMO

Over the past few decades, NMR spectroscopy has become an established tool in drug discovery. This communication will highlight the potential of NMR spectroscopy as a method for identification of problematic compounds and as a valuable aid toward revealing some mechanisms of promiscuous behavior. NMR methods for detecting false positives will be analyzed on the basis of their performance, strengths, limitations, and potential pitfalls. Additionally, this communication aims to provide an insight into the limitations of NMR-based methodologies applied to ligand screening in the context of false-positive hits.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Autoantígenos/metabolismo , Glicogênio Fosforilase/metabolismo , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Ribonucleoproteínas/metabolismo , Antígeno SS-B
19.
J Immunol Res ; 2017: 8959687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29318161

RESUMO

The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p < 0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren's syndrome.


Assuntos
Autoantígenos/metabolismo , Hidrolases/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Glândulas Salivares/fisiologia , Síndrome de Sjogren/metabolismo , Trifosfato de Adenosina/imunologia , Animais , Apoptose , Células Cultivadas , Citrulinação , Citocinas/metabolismo , Ativação Enzimática , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrolases/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Antígeno SS-B
20.
Sci Rep ; 6: 29680, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27403722

RESUMO

The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18ß-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18ß-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development.


Assuntos
Chalconas/farmacologia , Ebolavirus/metabolismo , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/química , Marburgvirus/metabolismo , Ribonucleoproteínas/metabolismo , Chalconas/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Ligantes , Espectrometria de Massas , Metabolômica , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , RNA Viral/metabolismo , Ribonucleoproteínas/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA