Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 247: 118698, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798233

RESUMO

The amplitude envelope of speech carries crucial low-frequency acoustic information that assists linguistic decoding at multiple time scales. Neurophysiological signals are known to track the amplitude envelope of adult-directed speech (ADS), particularly in the theta-band. Acoustic analysis of infant-directed speech (IDS) has revealed significantly greater modulation energy than ADS in an amplitude-modulation (AM) band centred on ∼2 Hz. Accordingly, cortical tracking of IDS by delta-band neural signals may be key to language acquisition. Speech also contains acoustic information within its higher-frequency bands (beta, gamma). Adult EEG and MEG studies reveal an oscillatory hierarchy, whereby low-frequency (delta, theta) neural phase dynamics temporally organize the amplitude of high-frequency signals (phase amplitude coupling, PAC). Whilst consensus is growing around the role of PAC in the matured adult brain, its role in the development of speech processing is unexplored. Here, we examined the presence and maturation of low-frequency (<12 Hz) cortical speech tracking in infants by recording EEG longitudinally from 60 participants when aged 4-, 7- and 11- months as they listened to nursery rhymes. After establishing stimulus-related neural signals in delta and theta, cortical tracking at each age was assessed in the delta, theta and alpha [control] bands using a multivariate temporal response function (mTRF) method. Delta-beta, delta-gamma, theta-beta and theta-gamma phase-amplitude coupling (PAC) was also assessed. Significant delta and theta but not alpha tracking was found. Significant PAC was present at all ages, with both delta and theta -driven coupling observed.


Assuntos
Ritmo Delta/fisiologia , Percepção da Fala/fisiologia , Ritmo Teta/fisiologia , Estimulação Acústica , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Lactente , Estudos Longitudinais , Reino Unido
2.
Anesthesiology ; 135(4): 633-648, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270686

RESUMO

BACKGROUND: Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. METHODS: Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin-dependent protein kinase 2α-positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg-1 · min-1 for 45 min, eight rats; high dose: 4.5 µg · kg-1 · min-1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg-1 · min-1 for 30 min, seven rats; high dose: 4 mg · kg-1 · min-1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. RESULTS: Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide - saline] during dexmedetomidine infusion = -6.06 [99% CI = -12.36 to -1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [-1.93, -0.87] dB, 99% CI = [-4.16 to -0.56, -1.62 to -0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [-20.06 to 14.14, -20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: -3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). CONCLUSIONS: These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic's molecular target.


Assuntos
Ritmo Delta/efeitos dos fármacos , Dexmedetomidina/farmacologia , Ácido Glutâmico , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Anestesia/métodos , Anestésicos Dissociativos/farmacologia , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Ritmo Delta/fisiologia , Ácido Glutâmico/fisiologia , Hipnóticos e Sedativos/farmacologia , Masculino , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Sprague-Dawley
3.
Biosystems ; 208: 104466, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34246689

RESUMO

BACKGROUND: The variational Free Energy Principle (FEP) establishes that a neural system minimizes a free energy function of their internal state through environmental sensing entailing beliefs about hidden states in their environment. PROBLEM: Because sensations are drastically reduced during sleep, it is still unclear how a self-organizing neural network can modulate free energy during sleep transitions. GOAL: To address this issue, we study how network's state-dependent changes in energy, entropy and free energy connect with changes at the synaptic level in the absence of sensing during a sleep-like transition. APPROACH: We use simulations of a physically plausible, environmentally isolated neuronal network that self-organize after inducing a thalamic input to show that the reduction of non-variational free energy depends sensitively upon thalamic input at a slow, rhythmic Poisson (delta) frequency due to spike timing dependent plasticity. METHODS: We define a non-variational free energy in terms of the relative difference between the energy and entropy of the network from the initial distribution (prior to activity dependent plasticity) to the nonequilibrium steady-state distribution (after plasticity). We repeated the analysis under different levels of thalamic drive - as defined by the number of cortical neurons in receipt of thalamic input. RESULTS: Entraining slow activity with thalamic input induces a transition from a gamma (awake-like state) to a delta (sleep-like state) mode of activity, which can be characterized through a modulation of network's energy and entropy (non-variational free energy) of the ensuing dynamics. The self-organizing response to low and high thalamic drive also showed characteristic differences in the spectrum of frequency content due to spike timing dependent plasticity. CONCLUSIONS: The modulation of this non-variational free energy in a network that self-organizes, seems to be an organizational network principle. This could open a window to new empirically testable hypotheses about state changes in a neural network.


Assuntos
Entropia , Heurística/fisiologia , Redes Neurais de Computação , Sono/fisiologia , Ritmo Delta/fisiologia , Humanos , Neurônios/fisiologia , Tálamo/fisiologia , Vigília/fisiologia
4.
Comput Math Methods Med ; 2021: 6676681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976707

RESUMO

Understanding the connection between different stimuli and the brain response represents a complex research area. However, the use of mathematical models for this purpose is relatively unexplored. The present study investigates the effects of three different auditory stimuli on cerebral biopotentials by means of mathematical functions. The effects of acoustic stimuli (S1, S2, and S3) on cerebral activity were evaluated by electroencephalographic (EEG) recording on 21 subjects for 20 minutes of stimulation, with a 5-minute period of silence before and after stimulation. For the construction of the mathematical models used for the study of the EEG rhythms, we used the Box-Jenkins methodology. Characteristic mathematical models were obtained for the main frequency bands and were expressed by 2 constant functions, 8 first-degree functions, a second-degree function, a fourth-degree function, 6 recursive functions, and 4 periodic functions. The values obtained for the variance estimator are low, demonstrating that the obtained models are correct. The resulting mathematical models allow us to objectively compare the EEG response to the three stimuli, both between the stimuli itself and between each stimulus and the period before stimulation.


Assuntos
Estimulação Acústica/métodos , Encéfalo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Modelos Neurológicos , Estimulação Acústica/estatística & dados numéricos , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Mapeamento Encefálico/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Ritmo Delta/fisiologia , Eletroencefalografia/estatística & dados numéricos , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Ritmo Teta/fisiologia , Adulto Jovem
5.
Cereb Cortex ; 31(9): 4289-4299, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33949654

RESUMO

Speech is transient. To comprehend entire sentences, segments consisting of multiple words need to be memorized for at least a while. However, it has been noted previously that we struggle to memorize segments longer than approximately 2.7 s. We hypothesized that electrophysiological processing cycles within the delta band (<4 Hz) underlie this time constraint. Participants' EEG was recorded while they listened to temporarily ambiguous sentences. By manipulating the speech rate, we aimed at biasing participants' interpretation: At a slow rate, segmentation after 2.7 s would trigger a correct interpretation. In contrast, at a fast rate, segmentation after 2.7 s would trigger a wrong interpretation and thus an error later in the sentence. In line with the suggested time constraint, the phase of the delta-band oscillation at the critical point in the sentence mirrored segmentation on the level of single trials, as indicated by the amplitude of the P600 event-related brain potential (ERP) later in the sentence. The correlation between upstream delta-band phase and downstream P600 amplitude implies that segmentation took place when an underlying neural oscillator had reached a specific angle within its cycle, determining comprehension. We conclude that delta-band oscillations set an endogenous time constraint on segmentation.


Assuntos
Encéfalo/fisiologia , Ritmo Delta/fisiologia , Potenciais Evocados Auditivos/fisiologia , Linguística/métodos , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Adulto , Relógios Biológicos/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
6.
Neuroimage ; 233: 117958, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744458

RESUMO

The representation of speech in the brain is often examined by measuring the alignment of rhythmic brain activity to the speech envelope. To conveniently quantify this alignment (termed 'speech tracking') many studies consider the broadband speech envelope, which combines acoustic fluctuations across the spectral range. Using EEG recordings, we show that using this broadband envelope can provide a distorted picture on speech encoding. We systematically investigated the encoding of spectrally-limited speech-derived envelopes presented by individual and multiple noise carriers in the human brain. Tracking in the 1 to 6 Hz EEG bands differentially reflected low (0.2 - 0.83 kHz) and high (2.66 - 8 kHz) frequency speech-derived envelopes. This was independent of the specific carrier frequency but sensitive to attentional manipulations, and may reflect the context-dependent emphasis of information from distinct spectral ranges of the speech envelope in low frequency brain activity. As low and high frequency speech envelopes relate to distinct phonemic features, our results suggest that functionally distinct processes contribute to speech tracking in the same EEG bands, and are easily confounded when considering the broadband speech envelope.


Assuntos
Estimulação Acústica/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Ritmo Delta/fisiologia , Percepção da Fala/fisiologia , Ritmo Teta/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Fala/fisiologia , Adulto Jovem
7.
Neuroimage ; 224: 117376, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949708

RESUMO

The phase of neural oscillatory signals aligns to the predicted onset of upcoming stimulation. Whether such phase alignments represent phase resets of underlying neural oscillations or just rhythmically evoked activity, and whether they can be observed in a rhythm-free visual context, however, remains unclear. Here, we recorded the magnetoencephalogram while participants were engaged in a temporal prediction task, judging the visual or tactile reappearance of a uniformly moving stimulus. The prediction conditions were contrasted with a control condition to dissociate phase adjustments of neural oscillations from stimulus-driven activity. We observed stronger delta band inter-trial phase consistency (ITPC) in a network of sensory, parietal and frontal brain areas, but no power increase reflecting stimulus-driven or prediction-related evoked activity. Delta ITPC further correlated with prediction performance in the cerebellum and visual cortex. Our results provide evidence that phase alignments of low-frequency neural oscillations underlie temporal predictions in a non-rhythmic visual and crossmodal context.


Assuntos
Ritmo beta/fisiologia , Ritmo Delta/fisiologia , Tato/fisiologia , Córtex Visual/fisiologia , Estimulação Acústica/métodos , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
8.
J Neurosci ; 40(49): 9467-9475, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33097640

RESUMO

Neural oscillations track linguistic information during speech comprehension (Ding et al., 2016; Keitel et al., 2018), and are known to be modulated by acoustic landmarks and speech intelligibility (Doelling et al., 2014; Zoefel and VanRullen, 2015). However, studies investigating linguistic tracking have either relied on non-naturalistic isochronous stimuli or failed to fully control for prosody. Therefore, it is still unclear whether low-frequency activity tracks linguistic structure during natural speech, where linguistic structure does not follow such a palpable temporal pattern. Here, we measured electroencephalography (EEG) and manipulated the presence of semantic and syntactic information apart from the timescale of their occurrence, while carefully controlling for the acoustic-prosodic and lexical-semantic information in the signal. EEG was recorded while 29 adult native speakers (22 women, 7 men) listened to naturally spoken Dutch sentences, jabberwocky controls with morphemes and sentential prosody, word lists with lexical content but no phrase structure, and backward acoustically matched controls. Mutual information (MI) analysis revealed sensitivity to linguistic content: MI was highest for sentences at the phrasal (0.8-1.1 Hz) and lexical (1.9-2.8 Hz) timescales, suggesting that the delta-band is modulated by lexically driven combinatorial processing beyond prosody, and that linguistic content (i.e., structure and meaning) organizes neural oscillations beyond the timescale and rhythmicity of the stimulus. This pattern is consistent with neurophysiologically inspired models of language comprehension (Martin, 2016, 2020; Martin and Doumas, 2017) where oscillations encode endogenously generated linguistic content over and above exogenous or stimulus-driven timing and rhythm information.SIGNIFICANCE STATEMENT Biological systems like the brain encode their environment not only by reacting in a series of stimulus-driven responses, but by combining stimulus-driven information with endogenous, internally generated, inferential knowledge and meaning. Understanding language from speech is the human benchmark for this. Much research focuses on the purely stimulus-driven response, but here, we focus on the goal of language behavior: conveying structure and meaning. To that end, we use naturalistic stimuli that contrast acoustic-prosodic and lexical-semantic information to show that, during spoken language comprehension, oscillatory modulations reflect computations related to inferring structure and meaning from the acoustic signal. Our experiment provides the first evidence to date that compositional structure and meaning organize the oscillatory response, above and beyond prosodic and lexical controls.


Assuntos
Psicolinguística , Estimulação Acústica , Adulto , Compreensão/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Processos Mentais/fisiologia , Semântica , Percepção da Fala , Adulto Jovem
9.
Clin Neurophysiol ; 131(10): 2357-2366, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828038

RESUMO

OBJECTIVE: Aside from the cognitive impairment, patients with dementia with Lewy bodies (DLB) have a high frequency of visual hallucinations and a number of other vision-related symptoms, whereas auditory hallucinations are less frequent. To better understand the differential dysfunction of the visual network in DLB, we compared auditory and visual event-related potentials and oscillations in patients with DLB. METHODS: Event-related potentials elicited by visual and auditory oddball tasks were recorded in 23 patients with DLB and 22 healthy controls and analyzed in time and time-frequency domain. RESULTS: DLB patients had decreased theta band activity related to both early sensory and later cognitive processing in the visual, but not in the auditory task. Patients had lower delta and higher alpha and beta bands power related to later cognitive processing in both auditory and visual tasks. CONCLUSIONS: In DLB visual event-related oscillations are characterized by a decrease in theta and lack of inhibition in alpha bands. SIGNIFICANCE: Decreased theta and a lack of inhibition in alpha band power might be an oscillatory underpinning of some classical DLB symptoms such as fluctuations in attention and high-level visual disturbances and a potential marker of dysfunction of the visual system in DLB.


Assuntos
Ritmo alfa/fisiologia , Ritmo Delta/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Doença por Corpos de Lewy/fisiopatologia , Estimulação Acústica , Idoso , Idoso de 80 Anos ou mais , Cognição/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa
10.
Sci Rep ; 10(1): 8813, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483199

RESUMO

Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C ß4 (PLCß4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCß4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCß4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.


Assuntos
Consolidação da Memória/fisiologia , Transtornos da Memória/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Fosfolipase C beta/fisiologia , Fases do Sono/fisiologia , Tálamo/enzimologia , Animais , Córtex Cerebral/enzimologia , Condicionamento Clássico/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia , Eletromiografia , Éxons/genética , Comportamento Exploratório , Medo/fisiologia , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Neurônios/enzimologia , Fosfolipase C beta/deficiência , Reconhecimento Psicológico , Deleção de Sequência , Sono de Ondas Lentas/fisiologia , Fatores de Tempo
11.
J Neurosci ; 39(41): 8112-8123, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501297

RESUMO

Previous neuroimaging studies have identified various brain regions that are activated by music listening or recall. However, little is known about how these brain regions represent the time course and temporal features of music during listening and recall. Here we analyzed neural activity in different brain regions associated with music listening and recall using electrocorticography recordings obtained from 10 epilepsy patients of both genders implanted with subdural electrodes. Electrocorticography signals were recorded while subjects were listening to familiar instrumental music or recalling the same music pieces by imagery. During the onset phase (0-500 ms), music listening initiated cortical activity in high-gamma band in the temporal lobe and supramarginal gyrus, followed by the precentral gyrus and the inferior frontal gyrus. In contrast, during music recall, the high-gamma band activity first appeared in the inferior frontal gyrus and precentral gyrus, and then spread to the temporal lobe, showing a reversed temporal sequential order. During the sustained phase (after 500 ms), delta band and high-gamma band responses in the supramarginal gyrus, temporal and frontal lobes dynamically tracked the intensity envelope of the music during listening or recall with distinct temporal delays. During music listening, the neural tracking by the frontal lobe lagged behind that of the temporal lobe; whereas during music recall, the neural tracking by the frontal lobe preceded that of the temporal lobe. These findings demonstrate bottom-up and top-down processes in the cerebral cortex during music listening and recall and provide important insights into music processing by the human brain.SIGNIFICANCE STATEMENT Understanding how the brain analyzes, stores, and retrieves music remains one of the most challenging problems in neuroscience. By analyzing direct neural recordings obtained from the human brain, we observed dispersed and overlapping brain regions associated with music listening and recall. Music listening initiated cortical activity in high-gamma band starting from the temporal lobe and ending at the inferior frontal gyrus. A reversed temporal flow was observed in high-gamma response during music recall. Neural responses of frontal and temporal lobes dynamically tracked the intensity envelope of music that was presented or imagined during listening or recall. These findings demonstrate bottom-up and top-down processes in the cerebral cortex during music listening and recall.


Assuntos
Encéfalo/fisiologia , Rememoração Mental/fisiologia , Música/psicologia , Estimulação Acústica , Adolescente , Adulto , Ritmo Delta/fisiologia , Eletrocorticografia , Eletrodos Implantados , Epilepsia/psicologia , Feminino , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Humanos , Imaginação , Masculino , Pessoa de Meia-Idade , Lobo Temporal/fisiologia , Adulto Jovem
12.
Neurosci Biobehav Rev ; 107: 136-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518638

RESUMO

In the motor cortex, beta oscillations (∼12-30 Hz) are generally considered a principal rhythm contributing to movement planning and execution. Beta oscillations cohabit and dynamically interact with slow delta oscillations (0.5-4 Hz), but the role of delta oscillations and the subordinate relationship between these rhythms in the perception-action loop remains unclear. Here, we review evidence that motor delta oscillations shape the dynamics of motor behaviors and sensorimotor processes, in particular during auditory perception. We describe the functional coupling between delta and beta oscillations in the motor cortex during spontaneous and planned motor acts. In an active sensing framework, perception is strongly shaped by motor activity, in particular in the delta band, which imposes temporal constraints on the sampling of sensory information. By encoding temporal contextual information, delta oscillations modulate auditory processing and impact behavioral outcomes. Finally, we consider the contribution of motor delta oscillations in the perceptual analysis of speech signals, providing a contextual temporal frame to optimize the parsing and processing of slow linguistic information.


Assuntos
Percepção Auditiva/fisiologia , Ritmo Delta/fisiologia , Córtex Motor/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Humanos , Fala
13.
Eur J Neurosci ; 50(11): 3831-3842, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31287601

RESUMO

Speech is central to communication among humans. Meaning is largely conveyed by the selection of linguistic units such as words, phrases and sentences. However, prosody, that is the variation of acoustic cues that tie linguistic segments together, adds another layer of meaning. There are various features underlying prosody, one of the most important being pitch and how it is modulated. Recent fMRI and ECoG studies have suggested that there are cortical regions for pitch which respond primarily to resolved harmonics and that high-gamma cortical activity encodes intonation as represented by relative pitch. Importantly, this latter result was shown to be independent of the cortical tracking of the acoustic energy of speech, a commonly used measure. Here, we investigate whether we can isolate low-frequency EEG indices of pitch processing of continuous narrative speech from those reflecting the tracking of other acoustic and phonetic features. Harmonic resolvability was found to contain unique predictive power in delta and theta phase, but it was highly correlated with the envelope and tracked even when stimuli were pitch-impoverished. As such, we are circumspect about whether its contribution is truly pitch-specific. Crucially however, we found a unique contribution of relative pitch to EEG delta-phase prediction, and this tracking was absent when subjects listened to pitch-impoverished stimuli. This finding suggests the possibility of a separate processing stream for prosody that might operate in parallel to acoustic-linguistic processing. Furthermore, it provides a novel neural index that could be useful for testing prosodic encoding in populations with speech processing deficits and for improving cognitively controlled hearing aids.


Assuntos
Córtex Auditivo/fisiologia , Ritmo Delta/fisiologia , Fonética , Percepção da Altura Sonora/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino
14.
Behav Neurosci ; 133(4): 414-427, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31169383

RESUMO

Although the neural markers of interval timing have been widely studied, the events that determine the onset and offset of an interval have only recently started to gain attention. In the present study, I compare the predictions of the perceptual (preonset and start-gun) and decisional bias hypotheses with respect to onset N1P2 amplitude, the point of subjective equality (PSE) and delta/theta activity. The onsets of the comparison intervals (CIs) were manipulated to begin earlier, later, or on-time with regard to a standard interval (SI). Results supported the start-gun account by demonstrating an increase in the N1P2 amplitude and delta power in the "early" and "late" onset conditions due to temporal mismatch. Delayed or premature initiation of timing with respect to the predicted temporal point were associated with rightward and leftward shifts in the PSEs of the "early" and "late" onset conditions, respectively. In addition to the observed increase in temporal prediction-related delta activity in the "early" and "late" onset conditions, higher theta power in the "early" onset suggested an additional neural response for unexpected events that might be linked to response caution. Moreover, the ramping activity during the CIs, namely the contingent negative variation (CNV), showed a decision-related attenuation toward the end of an interval in the "late" onset. The latter finding was supported by the changes in offset N1P2 amplitude. The present study contributes to the interval-timing literature by presenting support in favor of the hypothesis that the onset N1P2 is a neural marker for the initiation of timing. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Variação Contingente Negativa/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica/métodos , Adulto , Atenção , Encéfalo/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia
15.
J Neurosci ; 39(29): 5750-5759, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109963

RESUMO

Humans excel at understanding speech even in adverse conditions such as background noise. Speech processing may be aided by cortical activity in the delta and theta frequency bands, which have been found to track the speech envelope. However, the rhythm of non-speech sounds is tracked by cortical activity as well. It therefore remains unclear which aspects of neural speech tracking represent the processing of acoustic features, related to the clarity of speech, and which aspects reflect higher-level linguistic processing related to speech comprehension. Here we disambiguate the roles of cortical tracking for speech clarity and comprehension through recording EEG responses to native and foreign language in different levels of background noise, for which clarity and comprehension vary independently. We then use a both a decoding and an encoding approach to relate clarity and comprehension to the neural responses. We find that cortical tracking in the theta frequency band is mainly correlated to clarity, whereas the delta band contributes most to speech comprehension. Moreover, we uncover an early neural component in the delta band that informs on comprehension and that may reflect a predictive mechanism for language processing. Our results disentangle the functional contributions of cortical speech tracking in the delta and theta bands to speech processing. They also show that both speech clarity and comprehension can be accurately decoded from relatively short segments of EEG recordings, which may have applications in future mind-controlled auditory prosthesis.SIGNIFICANCE STATEMENT Speech is a highly complex signal whose processing requires analysis from lower-level acoustic features to higher-level linguistic information. Recent work has shown that neural activity in the delta and theta frequency bands track the rhythm of speech, but the role of this tracking for speech processing remains unclear. Here we disentangle the roles of cortical entrainment in different frequency bands and at different temporal lags for speech clarity, reflecting the acoustics of the signal, and speech comprehension, related to linguistic processing. We show that cortical speech tracking in the theta frequency band encodes mostly speech clarity, and thus acoustic aspects of the signal, whereas speech tracking in the delta band encodes the higher-level speech comprehension.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Ritmo Delta/fisiologia , Ruído , Percepção da Fala/fisiologia , Ritmo Teta/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Fala/fisiologia , Adulto Jovem
16.
Sci Rep ; 9(1): 4262, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862790

RESUMO

Despite extensive research on various types of meditation, research on the neural correlates of religious chanting is in a nascent stage. Using multi-modal electrophysiological and neuroimaging methods, we illustrate that during religious chanting, the posterior cingulate cortex shows the largest decrease in eigenvector centrality, potentially due to regional endogenous generation of delta oscillations. Our data show that these functional effects are not due to peripheral cardiac or respiratory activity, nor due to implicit language processing. Finally, we suggest that the neurophysiological correlates of religious chanting are likely different from those of meditation and prayer, and would possibly induce distinctive psychotherapeutic effects.


Assuntos
Ritmo Delta/fisiologia , Giro do Cíngulo/fisiologia , Meditação , Religião , Canto , Adulto , Feminino , Giro do Cíngulo/diagnóstico por imagem , Hong Kong , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem
17.
Neuroscience ; 404: 541-556, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738854

RESUMO

Aging is associated with sleep-wake disruption, dampening of circadian amplitudes, and a reduced homeostatic sleep response. Aging is also associated with a decline in hypothalamic cell proliferation. We hypothesized that the aging-related decline in cell-proliferation contributes to the dysfunction of preoptic-hypothalamic sleep-wake and circadian systems and consequent sleep-wake disruption. We determined if cytosine-ß-D-arabinofuranoside (AraC), an antimitotic agent known to suppress hypothalamic cell proliferation and neurogenesis, causes sleep-wake instability in young mice. The sleep-wake profiles were compared during baseline, during 4 weeks of artificial cerebrospinal fluid (aCSF) + 5-bromo-2'-deoxyuridine (BrdU) or AraC+BrdU infusion into the lateral ventricle, and 8 weeks after treatments. The sleep-wake architecture after AraC treatment was further compared with sleep-wake profiles in aged mice. Compared to aCSF+BrdU, 4 weeks of AraC+BrdU infusion significantly decreased (-96%) the number of BrdU+ cells around the third ventricular wall and adjacent preoptic-hypothalamic area and produced a) sleep disruption during the light phase with decreases in non-rapid eye movement (nonREM) (-9%) and REM sleep (-21%) amounts, and increased numbers of shorter (<2 min; 142 versus 98 episodes/12 h) and decreased numbers of longer (>5 min; 19 versus 26 episodes/12 h) nonREM sleep episodes; and b) wake disruption during the dark phase, with increased numbers of shorter (138 versus 91 episodes/12 h) and decreased numbers of longer active waking (17 versus 24 episodes/12 h) episodes. AraC-treated mice also exhibited lower delta activity within nonREM recovery sleep. The sleep-wake architecture of AraC-treated mice was similar to that observed in aged mice. These findings are consistent with a hypothesis that a decrease in hypothalamic cell proliferation/neurogenesis is detrimental to sleep-wake and circadian systems and may underlie sleep-wake disturbance in aging.


Assuntos
Envelhecimento/fisiologia , Proliferação de Células/fisiologia , Hipotálamo/fisiologia , Neurogênese/fisiologia , Sono/fisiologia , Vigília/fisiologia , Fatores Etários , Envelhecimento/efeitos dos fármacos , Animais , Antimitóticos/administração & dosagem , Antimitóticos/toxicidade , Proliferação de Células/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Ritmo Delta/fisiologia , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
18.
PLoS One ; 14(1): e0210862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677056

RESUMO

Oculometric measures have been proven to be useful markers of mind-wandering during visual tasks such as reading. However, little is known about ocular activity during mindfulness meditation, a mental practice naturally involving mind-wandering episodes. In order to explore this issue, we extracted closed-eyes ocular movement measurements via a covert technique (EEG recordings) from expert meditators during two repetitions of a 7-minute mindfulness meditation session, focusing on the breath, and two repetitions of a 7-minute instructed mind-wandering task. Power spectral density was estimated on both the vertical and horizontal components of eye movements. The results show a significantly smaller average amplitude of eye movements in the delta band (1-4 Hz) during mindfulness meditation than instructed mind-wandering. Moreover, participants' meditation expertise correlated significantly with this average amplitude during both tasks, with more experienced meditators generally moving their eyes less than less experienced meditators. These findings suggest the potential use of this measure to detect mind-wandering episodes during mindfulness meditation and to assess meditation performance.


Assuntos
Movimentos Oculares/fisiologia , Meditação/psicologia , Atenção Plena , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Ritmo Delta/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Neuroimage ; 181: 461-470, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025852

RESUMO

An experimentally tested neural field theory of the corticothalamic system is used to model brain activity and resulting experimental EEG data, and to elucidate the neural mechanisms and physiological basis of alpha-BOLD anticorrelation observed in concurrent EEG and fMRI measurements. Several studies have proposed that the anticorrelation originates from a causal link between changes in the alpha power and BOLD signal. However, the results in this study reveal that fluctuations in alpha and BOLD power do not generate one another but instead respectively result from high- and low-frequency components of the same underlying cortical activity, and that they are inversely correlated via variations in the strengths of corticothalamic and intrathalamic feedback, thereby explaining their anticorrelation.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Tálamo/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Ritmo Delta/fisiologia , Humanos , Oxigênio/sangue , Tálamo/diagnóstico por imagem
20.
Autism Res ; 11(4): 613-623, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29381247

RESUMO

Delta EEG activity (0.75-3.75 Hz) during non-Rapid eye movement (NREM) sleep reflects the thalamo-cortical system contribution to memory consolidation. The functional integrity of this system is thought to be compromised in the Autism spectrum disorder (ASD). This lead us to investigate the topography of NREM sleep Delta EEG activity in young adults with ASD and typically-developed individuals (TYP). The relationship between Delta EEG activity and sensory-motor procedural information was also examined using a rotary pursuit task. Two dependent variables were computed: a learning index (performance increase across trials) and a performance index (average performance for all trials). The ASD group showed less Delta EEG activity during NREM sleep over the parieto-occipital recording sites compared to the TYP group. Delta EEG activity dropped more abruptly from frontal to posterior regions in the ASD group. Both groups of participants learned the task at a similar rate but the ASD group performed less well in terms of contact time with the target. Delta EEG activity during NREM sleep, especially during stage 2, correlated positively with the learning index for electrodes located all over the cortex in the TYP group, but only in the frontal region in the ASD group. Delta EEG activity, especially during stage 2, correlated positively with the performance index, but in the ASD group only. These results reveal an atypical thalamo-cortical functioning over the parieto-occipital region in ASD. They also point toward an atypical relationship between the frontal area and the encoding of sensory-motor procedural memory in ASD. Autism Res 2018, 11: 613-623. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Slow EEG waves recorded from the scalp during sleep are thought to facilitate learning and memory during daytime. We compared these EEG waves in young autistic adults to typically-developing young adults. We found less slow EEG waves in the ASD group and the pattern of relationship with memory differed between groups. This suggests atypicalities in the way sleep mechanisms are associated with learning and performance in a sensory-motor procedural memory task in ASD individuals.


Assuntos
Transtorno Autístico/fisiopatologia , Eletroencefalografia , Transtornos da Memória/fisiopatologia , Desempenho Psicomotor/fisiologia , Sono de Ondas Lentas/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/diagnóstico , Correlação de Dados , Ritmo Delta/fisiologia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Masculino , Transtornos da Memória/diagnóstico , Rememoração Mental/fisiologia , Rede Nervosa/fisiopatologia , Lobo Occipital/fisiopatologia , Lobo Parietal/fisiopatologia , Valores de Referência , Tálamo/fisiopatologia , Escalas de Wechsler , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA