Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Psychopharmacology (Berl) ; 238(8): 2325-2334, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33944972

RESUMO

RATIONALE: Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. OBJECTIVE: We investigated the long-term psychometric stability of these measures in a rodent model. METHODS: Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025-0.15 mg/kg) to disrupt the evoked response. RESULTS: We found that 40-Hz ASSR showed good reliability (ICC=0.60-0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33-0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. CONCLUSION: Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Estimulação Acústica/métodos , Estimulação Acústica/normas , Animais , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Reprodutibilidade dos Testes
2.
Exp Neurol ; 343: 113743, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000250

RESUMO

Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Nootrópicos/administração & dosagem , Ritmo Teta/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/fisiologia , Colinérgicos/administração & dosagem , Dopaminérgicos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Rede Nervosa/fisiologia , Ritmo Teta/fisiologia , Resultado do Tratamento
3.
Neuropsychopharmacology ; 44(7): 1239-1246, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758327

RESUMO

Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Auditivos , Ritmo Gama , Ketamina/administração & dosagem , Esquizofrenia/induzido quimicamente , Estimulação Acústica , Adulto , Encéfalo/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios , Ritmo Gama/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Humanos , Masculino , Esquizofrenia/fisiopatologia , Adulto Jovem
4.
Neurosci Bull ; 34(3): 457-464, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380249

RESUMO

Gamma band oscillation (GBO) and sensory gating (SG) are associated with many cognitive functions. Ketamine induces deficits of GBO and SG in the prefrontal cortex (PFC). However, the time-courses of the effects of different doses of ketamine on GBO power and SG are poorly understood. Studies have indicated that GBO power and SG have a common substrate for their generation and abnormalities. In this study, we found that (1) ketamine administration increased GBO power in the PFC in rats differently in the low- and high-dose groups; (2) auditory SG was significantly lower than baseline in the 30 mg/kg and 60 mg/kg groups, but not in the 15 mg/kg and 120 mg/kg groups; and (3) changes in SG and basal GBO power were significantly correlated in awake rats. These results indicate a relationship between mechanisms underlying auditory SG and GBO power.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ketamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Vigília/efeitos dos fármacos , Estimulação Acústica , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletroencefalografia , Masculino , Ratos , Ratos Sprague-Dawley , Fases do Sono/efeitos dos fármacos , Estatística como Assunto , Fatores de Tempo
5.
J Comput Neurosci ; 43(3): 173-187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29047010

RESUMO

The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such activation pattern of A1 responses during auditory hallucination is consistent with aberrant gamma rhythms in schizophrenia observed during auditory tasks, raising the possibility that the pathology underlying abnormal gamma rhythms can account for auditory hallucination. Moreover, A1 receives top-down signals in the gamma frequency band from an adjacent association area (Par2), and cholinergic modulation regulates interactions between A1 and Par2. In this study, we utilized a computational model of A1 to ask if disrupted cholinergic modulation could underlie abnormal gamma rhythms in schizophrenia. Furthermore, based on our simulation results, we propose potential pathology by which A1 can directly contribute to auditory hallucination.


Assuntos
Córtex Auditivo/fisiopatologia , Colinérgicos/farmacologia , Ritmo Gama/efeitos dos fármacos , Alucinações/fisiopatologia , Esquizofrenia/fisiopatologia , Estimulação Acústica , Córtex Auditivo/efeitos dos fármacos , Simulação por Computador , Eletroencefalografia , Feminino , Ritmo Gama/fisiologia , Alucinações/patologia , Humanos , Masculino , Modelos Neurológicos , Inibição Neural/efeitos dos fármacos , Esquizofrenia/patologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
6.
Neurobiol Dis ; 108: 324-338, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28844789

RESUMO

Approximately one in 45 children have been diagnosed with Autism Spectrum Disorder (ASD), which is characterized by social/communication impairments. Recent studies have linked a subset of familial ASD to mutations in the Protocadherin 10 (Pcdh10) gene. Additionally, Pcdh10's expression pattern, as well as its known role within protein networks, implicates the gene in ASD. Subsequently, the neurobiology of mice heterozygous for Pcdh10 (Pcdh10+/-) has been investigated as a proxy for ASD. Male Pcdh10+/- mice have demonstrated sex-specific deficits in social behavior, recapitulating the gender bias observed in ASD. Furthermore, in vitro slice preparations of these Pcdh10+/- mice demonstrate selective decreases to high frequency electrophysiological responses, mimicking clinical observations. The direct in vivo ramifications of such decreased in vitro high frequency responses are unclear. As such, Pcdh10+/- mice and their wild-type (WT) littermates underwent in vivo electrocorticography (ECoG), as well as ex vivo amino acid concentration quantification using High Performance Liquid Chromatography (HPLC). Similar to the previously observed reductions to in vitro high frequency electrophysiological responses in Pcdh10+/- mice, male Pcdh10+/- mice exhibited reduced gamma-band (30-80Hz), but not lower frequency (10 and 20Hz), auditory steady state responses (ASSR). In addition, male Pcdh10+/- mice exhibited decreased signal-to-noise-ratio (SNR) for high gamma-band (60-100Hz) activity. These gamma-band perturbations for both ASSR and SNR were not observed in females. Administration of a GABAB agonist remediated these electrophysiological alterations among male Pcdh10+/-mice. Pcdh10+/- mice demonstrated increased concentrations of GABA and glutamine. Of note, a correlation of auditory gamma-band responses with underlying GABA concentrations was observed in WT mice. This correlation was not present in Pcdh10+/- mice. This study demonstrates the role of Pcdh10 in the regulation of excitatory-inhibitory balance as a function of GABA in ASD.


Assuntos
Baclofeno/farmacologia , Caderinas/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Acústica , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Caderinas/genética , Cromatografia Líquida de Alta Pressão , Eletrocorticografia , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Feminino , Glutamina/metabolismo , Masculino , Camundongos Transgênicos , Protocaderinas , Caracteres Sexuais , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
7.
Front Neural Circuits ; 11: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725184

RESUMO

Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12-40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC-CT and PFC-PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC-CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1-4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.


Assuntos
Anestésicos Inalatórios/farmacologia , Ritmo Delta/efeitos dos fármacos , Éteres Metílicos/farmacologia , Lobo Parietal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Animais , Ritmo beta/efeitos dos fármacos , Sincronização Cortical/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrodos Implantados , Ritmo Gama/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Sevoflurano , Tálamo/fisiologia
8.
Neuropharmacology ; 119: 141-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28400257

RESUMO

In vivo, theta (4-7 Hz) and gamma (30-80 Hz) neuronal network oscillations are known to coexist and display phase-amplitude coupling (PAC). However, in vitro, these oscillations have for many years been studied in isolation. Using an improved brain slice preparation technique we have, using co-application of carbachol (10 µM) and kainic acid (150 nM), elicited simultaneous theta (6.6 ± 0.1 Hz) and gamma (36.6 ± 0.4 Hz) oscillations in rodent primary motor cortex (M1). Each oscillation showed greatest power in layer V. Using a variety of time series analyses we detected significant cross-frequency coupling in 74% of slice preparations. Differences were observed in the pharmacological profile of each oscillation. Thus, gamma oscillations were reduced by the GABAA receptor antagonists, gabazine (250 nM and 2 µM), and picrotoxin (50 µM) and augmented by AMPA receptor antagonism with SYM2206 (20 µM). In contrast, theta oscillatory power was increased by gabazine, picrotoxin and SYM2206. GABAB receptor blockade with CGP55845 (5 µM) increased both theta and gamma power, and similar effects were seen with diazepam, zolpidem, MK801 and a series of metabotropic glutamate receptor antagonists. Oscillatory activity at both frequencies was reduced by the gap junction blocker carbenoxolone (200 µM) and by atropine (5 µM). These data show theta and gamma oscillations in layer V of rat M1 in vitro are cross-frequency coupled, and are mechanistically distinct. The development of an in vitro model of phase-amplitude coupled oscillations will facilitate further mechanistic investigation of the generation and modulation of coupled activity in mammalian cortex.


Assuntos
Ritmo Gama/fisiologia , Córtex Motor/fisiologia , Ritmo Teta/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios , Ritmo Gama/efeitos dos fármacos , Técnicas In Vitro , Ácido Caínico/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Neurotransmissores/farmacologia , Ratos , Ratos Wistar , Receptores de GABA/metabolismo , Ritmo Teta/efeitos dos fármacos
9.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275719

RESUMO

New antidepressant pharmacotherapies that provide rapid relief of depressive symptoms are needed. The NMDA receptor antagonist ketamine exerts rapid antidepressant actions in depressed patients but also side effects that complicate its clinical utility. Ketamine promotes excitatory synaptic strength, likely by producing high-frequency correlated activity in mood-relevant regions of the forebrain. Negative allosteric modulators of GABA-A receptors containing α5 subunits (α5 GABA-NAMs) should also promote high-frequency correlated electroencephalogram (EEG) activity and should therefore exert rapid antidepressant responses. Because α5 subunits display a restricted expression in the forebrain, we predicted that α5 GABA-NAMs would produce activation of principle neurons but exert fewer side effects than ketamine. We tested this hypothesis in male mice and observed that the α5 GABA-NAM MRK-016 exerted an antidepressant-like response in the forced swim test at 1 and 24 h after administration and an anti-anhedonic response after chronic stress in the female urine sniffing test (FUST). Like ketamine, MRK-016 produced a transient increase in EEG γ power, and both the increase in γ power and its antidepressant effects in the forced swim test were blocked by prior administration of the AMPA-type glutamate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX). Unlike ketamine, however, MRK-016 produced no impairment of rota-rod performance, no reduction of prepulse inhibition (PPI), no conditioned-place preference (CPP), and no change in locomotion. α5 GABA-NAMs, thus reproduce the rapid antidepressant-like actions of ketamine, perhaps via an AMPA receptor (AMPAR)-dependent increase in coherent neuronal activity, but display fewer potential negative side effects. These compounds thus demonstrate promise as clinically useful fast-acting antidepressants.


Assuntos
Antidepressivos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Isoxazóis/farmacologia , Receptores de GABA-A/metabolismo , Triazinas/farmacologia , Regulação Alostérica , Animais , Condicionamento Psicológico/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ritmo Gama/efeitos dos fármacos , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
10.
Psychiatry Res ; 247: 214-221, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918972

RESUMO

The symptoms of schizophrenia might be mediated by a cortical network disconnection which may disrupt the cortical oscillatory activity. Steady-state responses are an easy and consistent way to explore cortical oscillatory activity. A chirp-modulated tone (increasing the frequency of the modulation in a linear manner) allows a fast measure of the steady-state response to different modulation rates. With this approach, we studied the auditory steady-state responses in two groups of patients with schizophrenia (drug-naive and treated with atypical antipsychotic drugs), in order to assess the differences in their responses with respect to healthy subjects, and study any potential effect of medication. Drug-naive patients had reduced amplitude and inter-trial phase coherence of the response in the 30-50Hz range, and reduced amplitude of the response in the 90-100Hz range, when compared to controls. In the treated patients group, the response in the 30-50Hz range was normalized to values similar to the control group, but the reduction in amplitude in the 90-100Hz range remained as in the drug-naive group. These results suggest that gamma activity impairment in schizophrenia is a complex phenomenon that affects a wide band of frequencies and may be influenced by antipsychotic treatment.


Assuntos
Antipsicóticos/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Estimulação Acústica/métodos , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/tratamento farmacológico
11.
Anesth Analg ; 122(6): 1818-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26836135

RESUMO

BACKGROUND: Thalamocortical electroencephalographic rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. We have recently shown that propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 50 to 200 Hz range and that this effect is far more pronounced for the thalamus. To determine whether similar attenuation occurs with other anesthetics, we characterized the concentration-effect relationship of the inhaled anesthetic isoflurane on the spectral power of these rhythms. METHODS: Local field potentials were recorded from the barrel cortex and ventroposteromedial thalamic nucleus in 9 chronically instrumented rats to measure spectral power in the gamma/high-gamma range (30-200 Hz). Rats were placed in an airtight chamber and isoflurane was administered at 0.75%, 1.1%, and 1.5% concentrations. Spectral power was assessed during baseline, at the 3 isoflurane concentrations after 30 minutes for equilibration, and during recovery over 4 frequency bands (30-50, 51-75, 76-125, and 126-200 Hz). Unconsciousness was defined as sustained loss of righting reflex. Multiple linear regression was used to model the change in power (after logarithmic transformation) as a function of concentration and recording site. P values were corrected for multiple comparisons. RESULTS: Unconsciousness occurred at the 1.1% concentration in all animals. Isoflurane caused a robust (P ≤ 0.008) linear concentration-dependent attenuation of cortical and thalamic power in the 30 to 200 Hz range. The concentration-effect slope for the thalamus was steeper than for the cortex in the 51 to 75 Hz (P = 0.029) and 76 to 200 Hz (P < 0.001) ranges but not for the 30 to 50 Hz range (P = 0.320). Comparison with our previously published propofol data showed that slope for cortical power was steeper with isoflurane than with propofol for all frequency bands (P = 0.033). For thalamic power, the slope differences between isoflurane and propofol were not statistically significant (0.087 ≤ P ≤ 0.599). CONCLUSIONS: Isoflurane causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 30 to 200 Hz range, and this effect is more pronounced for the thalamus than for the cortex for frequencies >50 Hz. In comparison with propofol, isoflurane caused a greater attenuation in the cortex, but the effects on the thalamus were similar. Isoflurane and propofol cause common alterations of fast thalamocortical rhythms that may constitute an electrophysiologic signature of the anesthetized state.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia , Ritmo Gama/efeitos dos fármacos , Isoflurano/administração & dosagem , Tálamo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/fisiologia , Estado de Consciência/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Ratos Long-Evans , Reflexo de Endireitamento/efeitos dos fármacos , Processamento de Sinais Assistido por Computador , Tálamo/fisiologia , Fatores de Tempo
12.
PLoS One ; 10(4): e0123287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875024

RESUMO

BACKGROUND: Thalamocortical EEG rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. To test the hypothesis that general anesthetics attenuate these rhythms, we characterized the concentration-effect relationship of propofol on the spectral power of these rhythms. In view of the ongoing debate about cortex versus thalamus as the primary site of anesthetic action for unconsciousness, we also compared the relative sensitivity of cortex and thalamus to this effect propofol. METHODS: Adult male Long-Evans rats were chronically implanted with electrodes in somatosensory (barrel) cortex and ventroposteromedial thalamus. Propofol was delivered by a computer-controlled infusion using real-time pharmacokinetic modeling to obtain the desired plasma concentration. Spectral power was assessed during baseline, at four stable propofol plasma-concentrations (0, 3,6,9,12 µg/ml) and during recovery over four frequency ranges (30-50, 51-75, 76-125, 126-200 Hz). Unconsciousness was defined as complete loss of righting reflex. Multiple regression was used to model the change of power (after logarithmic transformation) as a function of propofol concentration and recording site. RESULTS: Unconsciousness occurred at the 9 µg/ml concentration in all animals. Propofol caused a robust linear concentration-dependent attenuation of cortical power in the 76-200 Hz range and of thalamic power in the 30-200 Hz range. In all instances the concentration-effect slope for the thalamus was markedly steeper than for the cortex. Furthermore the lowest concentration causing unconsciousness significantly reduced cortical power in the 126-200 Hz range and thalamic power in the 30-200 Hz range. CONCLUSIONS: Propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 30-200 Hz range and this effect is far more pronounced for the thalamus, where the attenuation provides a robust correlate of the hypnotic action of propofol [corrected].


Assuntos
Anestésicos Intravenosos/sangue , Córtex Cerebral/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Propofol/sangue , Tálamo/efeitos dos fármacos , Anestésicos Intravenosos/farmacocinética , Anestésicos Intravenosos/farmacologia , Animais , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Ritmo Gama/fisiologia , Masculino , Especificidade de Órgãos , Propofol/farmacocinética , Propofol/farmacologia , Ratos , Ratos Long-Evans , Tálamo/fisiologia , Inconsciência/sangue , Inconsciência/induzido quimicamente
13.
Neuropsychopharmacology ; 40(9): 2124-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25709097

RESUMO

Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.


Assuntos
Dronabinol/farmacologia , Ritmo Gama/efeitos dos fármacos , Psicotrópicos/farmacologia , Estimulação Acústica , Adolescente , Adulto , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Dronabinol/análogos & derivados , Dronabinol/sangue , Eletroencefalografia , Feminino , Análise de Fourier , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Psicoacústica , Psicotrópicos/sangue , Adulto Jovem
14.
Neuropharmacology ; 86: 362-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25181033

RESUMO

Synchronization of electroencephalographic (EEG) oscillations represents a core mechanism for cortical and subcortical networks, and disturbance in neural synchrony underlies cognitive processing deficits in neurological and neuropsychiatric disorders. Here, we investigated the effects of cognition enhancers (donepezil, rivastigmine, tacrine, galantamine and memantine), which are approved for symptomatic treatment of dementia, on EEG oscillations and network connectivity in conscious rats chronically instrumented with epidural electrodes in different cortical areas. Next, EEG network indices of cognitive impairments with the muscarinic receptor antagonist scopolamine were modeled. Lastly, we examined the efficacy of cognition enhancers to normalize those aberrant oscillations. Cognition enhancers elicited systematic ("fingerprint") enhancement of cortical slow theta (4.5-6 Hz) and gamma (30.5-50 Hz) oscillations correlated with lower activity levels. Principal component analysis (PCA) revealed a compact cluster that corresponds to shared underlying mechanisms as compared to different drug classes. Functional network connectivity revealed consistent elevated coherent slow theta activity in parieto-occipital and between interhemispheric cortical areas. In rats instrumented with depth hippocampal CA1-CA3 electrodes, donepezil elicited similar oscillatory and coherent activities in cortico-hippocampal networks. When combined with scopolamine, the cognition enhancers attenuated the leftward shift in coherent slow delta activity. Such a consistent shift in EEG coherence into slow oscillations associated with altered slow theta and gamma oscillations may underlie cognitive deficits in scopolamine-treated animals, whereas enhanced coherent slow theta and gamma activity may be a relevant mechanism by which cognition enhancers exert their beneficial effect on plasticity and cognitive processes. The findings underscore that PCA and network connectivity are valuable tools to assess efficacy of novel therapeutic drugs with cognition enhancing potential.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroencefalografia/métodos , Nootrópicos/farmacologia , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Donepezila , Eletrodos Implantados , Galantamina/farmacologia , Ritmo Gama/efeitos dos fármacos , Indanos/farmacologia , Masculino , Memantina/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Antagonistas Muscarínicos/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Fenilcarbamatos/farmacologia , Piperidinas/farmacologia , Análise de Componente Principal , Ratos Sprague-Dawley , Rivastigmina , Escopolamina/farmacologia , Processamento de Sinais Assistido por Computador , Tacrina/farmacologia , Ritmo Teta/efeitos dos fármacos
15.
Int J Neuropsychopharmacol ; 17(10): 1671-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24832766

RESUMO

Emerging literature implicates abnormalities in gamma frequency oscillations in the pathophysiology of schizophrenia, with hypofunction of N-methyl-D-aspartate (NMDA) receptors implicated as a key factor. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating, which is disrupted in schizophrenia. We studied relationships between ongoing and sensory-evoked gamma oscillations and PPI using pharmacological interventions designed to increase gamma oscillations (ketamine, MK-801); reduce gamma oscillations (LY379268); or disrupt PPI (amphetamine). We predicted that elevating ongoing gamma power would lead to increased 'neural noise' in cortical circuits, dampened sensory-evoked gamma responses and disrupted behaviour. Wistar rats were implanted with EEG recording electrodes. They received ketamine (5 mg/kg), MK-801 (0.16 mg/kg), amphetamine (0.5 mg/kg), LY379268 (3 mg/kg) or vehicle and underwent PPI sessions with concurrent EEG recording. Ketamine and MK-801 increased the power of ongoing gamma oscillations and caused time-matched disruptions of PPI, while amphetamine marginally affected ongoing gamma power. In contrast, LY379268 reduced ongoing gamma power, but had no effect on PPI. The sensory gamma response evoked by the prepulse was reduced following treatment with all psychotomimetics, associating with disruptions in PPI. This was most noticeable following treatment with NMDA receptor antagonists. We found that ketamine and MK-801 increase ongoing gamma power and reduce evoked gamma power, both of which are related to disruptions in sensorimotor gating. This appears to be due to antagonism of NMDA receptors, since amphetamine and LY379268 differentially impacted these outcomes and possess different neuropharmacological substrates. Aberrant gamma frequency oscillations caused by NMDA receptor hypofunction may mediate the sensory processing deficits observed in schizophrenia.


Assuntos
Ritmo Gama/fisiologia , Inibição Pré-Pulso/fisiologia , Filtro Sensorial/fisiologia , Estimulação Acústica , Aminoácidos/farmacologia , Análise de Variância , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Maleato de Dizocilpina/farmacologia , Eletroencefalografia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Análise de Fourier , Ritmo Gama/efeitos dos fármacos , Masculino , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Wistar , Filtro Sensorial/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA