Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 144, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494579

RESUMO

Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.


Assuntos
Bacteriófagos , Neoplasias do Colo , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Morte Celular , Rosa Bengala/farmacologia , Rosa Bengala/química , Neoplasias do Colo/terapia
2.
Lasers Med Sci ; 39(1): 72, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379056

RESUMO

The purpose is to assess the efficacy of rose bengal photodynamic antimicrobial therapy (PDAT) using different irradiation energy levels and photosensitizer concentrations for the inhibition of fungal keratitis isolates. Seven different fungi (Aspergillus fumigatus, Candida albicans, Curvularia lunata, Fusarium keratoplasticum, Fusarium solani, Paecilomyces variotii, and Pseudallescheria boydii) were isolated from patients with confirmed infectious keratitis. Experiments were performed in triplicate with suspensions of each fungus exposed to different PDAT parameters including a control, green light exposure of 5.4 J/cm2, 2.7 J/cm2 (continuous and pulsed), and 1.8 J/cm2 and rose bengal concentrations of 0.1%, 0.05%, and 0.01%. Plates were photographed 72 h after experimentation, and analysis was performed to assess fungal growth inhibition. PDAT using 5.4 J/cm2 of irradiation and 0.1% rose bengal completely inhibited growth of five of the seven fungal species. Candida albicans and Fusarium keratoplasticum were the most susceptible organisms, with growth inhibited with the lowest fluence and minimum rose bengal concentration. Fusarium solani, Pseudallescheria boydii, and Paecilomyces variotii were inhibited by lower light exposures and photosensitizer concentrations. Aspergillus fumigatus and Curvularia lunata were not inhibited by any PDAT parameters tested. Continuous and pulsed irradiation using 2.7 J/cm2 produced similar results. Rose bengal PDAT successfully inhibits the in vitro growth of five fungi known to cause infectious keratitis. Differences in growth inhibition of the various fungi to multiple PDAT parameters suggest that susceptibilities to PDAT are unique among fungal species. These findings support modifying PDAT parameters based on the infectious etiology.


Assuntos
Anti-Infecciosos , Byssochlamys , Curvularia , Fusarium , Ceratite , Scedosporium , Humanos , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Ceratite/tratamento farmacológico , Ceratite/radioterapia , Ceratite/microbiologia
3.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276623

RESUMO

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Oxigênio Singlete , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
4.
Pest Manag Sci ; 80(2): 296-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682561

RESUMO

BACKGROUND: Insecticides are critical for controlling mosquito populations and mitigating the spread of vector-borne disease, but their overuse has selected for resistant populations. A promising alternative to classical chemical insecticides is photosensitive molecules - here called photosensitive insecticides or PSIs - that when ingested and activated by light, generate broadly toxic reactive oxygen species. This mechanism of indiscriminate oxidative damage decreases the likelihood that target site modification-based resistance evolves. Here, we tested whether the PSIs, methylene blue (MB) and rose bengal (RB), are viable insecticides across the mosquito lineage. RESULTS: MB and RB are phototoxic to both Aedes aegypti and Anopheles gambiae at micromolar concentrations, with greatest toxicity when larvae are incubated in the dark with the PSIs for 2 h prior to photoactivation. MB is ten times more toxic than RB, and microscopy-based imaging suggests that this is because ingested MB escapes the larval gut and disperses throughout the hemocoel whereas RB remains confined to the gut. Adding food to the PSI-containing water has a bidirectional, concentration-dependent effect on PSI toxicity; toxicity increases at high concentrations but decreases at low concentrations. Finally, adding sand to the water increases the phototoxicity of RB to Ae. aegypti. CONCLUSION: MB and RB are larvicidal via a light activated mechanism, and therefore, should be further investigated as an option for mosquito control. © 2023 Society of Chemical Industry.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Animais , Inseticidas/farmacologia , Azul de Metileno/farmacologia , Rosa Bengala/farmacologia , Mosquitos Vetores , Extratos Vegetais/farmacologia , Larva , Água
5.
Photochem Photobiol ; 100(1): 115-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37477110

RESUMO

Rose bengal (RB) solutions coupled with a green laser have proven to be efficient in clearing resilient nail infections caused by Trichophyton rubrum in a human pilot study and in extensive in vitro experiments. Nonetheless, the RB solution can become diluted or dispersed over the tissue and prevented from penetrating the nail plate to reach the subungual area where fungal infection proliferates. Nanoparticles carrying RB can mitigate the problem of dilution and are reported to effectively penetrate through the nail. For this reason, we have synthesized RB-encapsulated chitosan nanoparticles with a peak distribution size of ~200 nm and high reactive oxygen species (ROS) production. The RB-encapsulated chitosan nanoparticles aPDT were shown to kill more than 99% of T. rubrum, T. mentagrophytes, and T. interdigitale spores, which are the common clinically relevant pathogens in onychomycosis. These nanoparticles are not cytotoxic against human fibroblasts, which promotes their safe application in clinical translation.


Assuntos
Quitosana , Onicomicose , Humanos , Trichophyton , Rosa Bengala/farmacologia , Projetos Piloto , Onicomicose/tratamento farmacológico
6.
Curr Eye Res ; 49(2): 150-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921272

RESUMO

PURPOSE: To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor ß1 (TGF-ß1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS: HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-ß1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS: TGF-ß1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-ß1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-ß1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS: Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-ß1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-ß1 and IL-6 protein level after 24 h.


Assuntos
Interleucina-6 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Rosa Bengala/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
PLoS One ; 18(12): e0296022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150488

RESUMO

PURPOSE: To investigate human corneal epithelial cell and fibroblast migration and growth factor secretion after rose bengal photodynamic therapy (RB-PDT) and the effect of conditioned medium (CM). METHODS: A human corneal epithelial cell line (HCE-T), human corneal fibroblasts (HCF) and keratoconus fibroblasts (KC-HCF) have been used. Twenty-four hours after RB-PDT (0.001% RB concentration, 565 nm wavelength illumination, 0.17 J/cm2 fluence) cell migration rate using scratch assay and growth factor concentrations in the cell culture supernatant using ELISA have been determined. In addition, the effect of CM has been observed. RESULTS: RB-PDT significantly reduced migration rate in all cell types, compared to controls (p≤0.02). Migration rate of HCE-T cultures without RB-PDT (untreated) was significantly higher using HCF CM after RB-PDT, than using HCF CM without RB-PDT (p<0.01). Similarly, untreated HCF displayed a significantly increased migration rate with HCE-T CM after RB-PDT, compared to HCE-T CM without treatment (p<0.01). Furthermore, illumination alone and RB-PDT significantly decreased keratinocyte growth factor (KGF) concentration in HCF and KC-HCF supernatant, and RB-PDT significantly decreased soluble N-Cadherin (SN-Cad) concentration in HCF supernatant, compared to controls (p<0.01 for all). In HCE-T CM, RB-PDT increased hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGFb) concentration (p≤0.02), while decreasing transforming growth factor ß (TGF-ß) concentration (p<0.01). FGFb concentration increased (p<0.0001) and TGF-ß concentration decreased (p<0.0001) in HCF CM, by RB-PDT. Epidermal growth factor (EGF), HGF, and TGF-ß concentration decreased (p≤0.03) and FGFb concentration increased (p<0.01) in KC-HCF CM, using RB-PDT. CONCLUSIONS: HCE-T, HCF and KC-HCF migration rate is reduced 24 hours after RB-PDT. In contrast, HCE-T migration is enhanced using HCF CM after RB-PDT, and HCF migration rate is increased through HCE-T CM following RB-PDT. Modulation of EGF, KGF, HGF, FGFb, TGF-ß and N-Cadherin secretion through RB-PDT may play an important role in corneal wound healing.


Assuntos
Fator de Crescimento Epidérmico , Fotoquimioterapia , Humanos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Rosa Bengala/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Movimento Celular , Fator de Crescimento Transformador beta/metabolismo , Células Epiteliais , Caderinas/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia
8.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836744

RESUMO

Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily internalized by cells and, in combination with a green laser (λ = 532 nm) killed 94-98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 µg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral
9.
J Ocul Pharmacol Ther ; 39(6): 379-388, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37389824

RESUMO

Purpose: Fungal keratitis is a potential corneal contagious disease mainly caused by yeast such as Candida albicans and filamentous fungi such as Aspergillus niger. The response of fungal keratitis to standard antifungals is limited by the poor bioavailability, the limited ocular penetration of antifungal drugs, and the development of microbial resistance. Photodynamic therapy using rose bengal (RB) as a photosensitizer was found to be effective in fungal keratitis management; however, the hydrophilicity of RB limits its corneal penetration. Polypyrrole-coated gold nanoparticles (AuPpy NP) were introduced as a nano-delivery system of RB with high loading capacity. It was proved that (RB-AuPpy NP) exhibited a combined photodynamic/photothermal effect. This study aims to use the combined photodynamic/photothermal effect of RB-AuPpy NP as a novel protocol for treating Fungal Keratitis in albino Wistar rats. Methods: The rats were infected by C. albicans and A. niger. Each infected group of rats was subdivided into groups treated by RB followed by radiation (photodynamic only), AuPpy NP followed by radiation (photothermal only), and RB-AuPpy NP followed by radiation (combined photodynamic/photothermal). Histopathological examination and slit lamp imaging were done to investigate the results. Results: The results revealed that 3 weeks post-treatment, the corneas treated by RB-AuPpy NP (combined photodynamic/photothermal effect) exhibited the best improvement compared to other groups. Conclusion: This protocol can be considered a promising one for Fungal Keratitis management that overcomes microbial resistance problems.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Nanopartículas Metálicas , Fotoquimioterapia , Ratos , Animais , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Polímeros/uso terapêutico , Ouro/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Ratos Wistar , Úlcera da Córnea/tratamento farmacológico , Fotoquimioterapia/métodos , Infecções Oculares Fúngicas/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
10.
ACS Appl Bio Mater ; 6(6): 2505-2513, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37289471

RESUMO

X-ray-triggered scintillators (Sc) and photosensitizers (Ps) have been developed for X-ray-induced photodynamic therapy (X-PDT) to selectively destruct deep tissue tumors with a low X-ray dose. This study designed terbium (Tb)-rose bengal (RB) coordination nanocrystals (T-RBNs) by a solvothermal treatment, aiming to reduce photon energy dissipation between Tb3+ and RB and thus increase the reactive oxygen species (ROS) production efficiency. T-RBNs synthesized at a molar ratio of [RB]/[Tb] = 3 exhibited a size of 6.8 ± 1.2 nm with a crystalline property. Fourier transform infrared analyses of T-RBNs indicated successful coordination between RB and Tb3+. T-RBNs generated singlet oxygen (1O2) and hydroxyl radicals (•OH) under low-dose X-ray irradiation (0.5 Gy) via scintillating and radiosensitizing pathways. T-RBNs produced ∼8-fold higher ROS amounts than bare RB and ∼3.6-fold higher ROS amounts than inorganic nanoparticle-based controls. T-RBNs did not exhibit severe cytotoxicity up to 2 mg/mL concentration in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells. Furthermore, T-RBNs were efficiently internalized into cultured 4T1-luc cells and induced DNA double strand damage, as evidenced by an immunofluorescence staining assay with phosphorylated γ-H2AX. Ultimately, under 0.5 Gy X-ray irradiation, T-RBNs induced >70% 4T1-luc cell death via simultaneous apoptosis/necrosis pathways. Overall, T-RBNs provided a promising Sc/Ps platform under low-dose X-PDT for advanced cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Humanos , Animais , Camundongos , Feminino , Rosa Bengala/farmacologia , Rosa Bengala/química , Térbio/farmacologia , Térbio/química , Térbio/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Raios X , Nanopartículas/uso terapêutico , Nanopartículas/química
11.
J Biomater Sci Polym Ed ; 34(5): 650-673, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36272104

RESUMO

At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Rosa Bengala/farmacologia , Quitosana/química , Fosfatidilinositol 3-Quinases , Sistemas de Liberação de Medicamentos , Nanopartículas/química
12.
Photochem Photobiol ; 99(3): 957-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36054748

RESUMO

In order, understanding the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of Staphylococcus aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmoL L-1 ) and illuminated with green LED (0.17 J cm-2 ) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction in S. aureus after photoinactivation was ~2.5 log CFU mL-1 . A total of 12 proteins (four up-regulated and eight down-regulated) correspond exclusively to alteration by RB-aPDT. Functionally, these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Staphylococcus aureus , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Proteômica , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia
13.
Int J Pharm ; 632: 122556, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36584864

RESUMO

The multifaceted drug carrier system is an emerging trend in delivering chemotherapeutic drugs and photosensitizers for the synergistic effect. In this work, we have designed a functionalized graphene oxide (GO) based carrier system for combined chemo-photodynamic therapeutic effects. Doxorubicin (DOX) and rose bengal (RB) were entrapped on the surface of GO via hydrophobic and π-π stacking interactions. The functional group determination, crystalline properties, surface morphology, and hydrodynamic size were evaluated using FT-IR, XRD, SEM, TEM, AFM, and DLS analysis. At 24 h, the entrapment efficiency was 65 % DOX and 40.92 % RB, and the loading capacities were 16.9 % DOX and 5.68 % RB observed at 30 min. The drug release percentage was higher in pH-2.6 rather than in pH-5.5, 6.8, and 7.4 pH environments. The in-vitro toxicity analysis using the LDH assay reveals that the DOX and RB co-loaded carriers had a significant cytotoxic effect on MCF-7 cells, indicating that the carrier could improve the therapeutic efficacy of DOX. Morphological changes were studied using inverted light microscopy; the cells were irradiated with a laser 525 nm 10 J/cm2 for 2 min 51 sec, and it was observed that the DOX and RB co-loaded carrier with laser-irradiated cells exposed the high-level morphological changes with the occurrence of apoptotic cell death. Compared to free DOX, the DOX/RB co-loaded carrier + laser had an efficient anticancer activity, as confirmed by DAPI staining cell uptake, flow cytometry, and intracellular ROS generation analysis. The DOX and RB co-loaded carrier clearly exhibits the RB-mediated photodynamic action on MCF-7 cells in response to external laser light irradiation. It permits an on-demand dual-payload release to trigger an instantaneous photodynamic and chemo treatment for cancer cell eradication. Finally, the ensuing dual-agent release is probable to successfully fight cancer via a synergistic effect.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química , Doxorrubicina/química , Rosa Bengala/farmacologia , Nanopartículas/química
14.
ACS Appl Bio Mater ; 5(11): 5477-5486, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318743

RESUMO

The use of scintillating nanoparticles (ScNPs) in X-ray-induced photodynamic therapy (X-PDT) is a technique for deep tissue-localized tumor therapy with few side effects. ScNPs transfer X-ray-induced energy to photosensitizers, which generate massive amounts of reactive oxygen species (ROS) and kill cancer cells. Here we fabricated rose bengal (RB)-installed, Tb3+-rich NaYF4 nanocrystals (NaYF4:Tb@RB), in which optically inert Y3+ enables highly efficient energy transfer via high amounts of Tb3+ doping. NaYF4:Tb was prepared via solvothermal synthesis to have an average size of 7.6 nm, followed by coating with poly(maleic anhydride-alt-1-octedecene)-poly(ethylene glycol) with a molecular weight of 2000 (C18PMH-PEG2k). Further, RB was covalently conjugated to carboxyl groups generated from PMH on NaYF4:Tb using an ethylenediamine linker. NaYF4:Tb@RB exhibited a hydrodynamic diameter of ∼75 nm with a ζ-potential of -12 mV. NaYF4:Tb@RB efficiently generated ROS in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells under low dose X-ray irradiation (0.5 Gy). The ROS generation amounts of NaYF4:Tb@RB were 1.5-2-fold higher than those of NaGdF4:Tb@RB, in which host nanocrystals were prepared with optically active Gd3+. Flow cytometric and confocal microscopic analyses showed higher intracellular ROS production of NaYF4:Tb@RB, compared to NaYF4:Tb and RB, resulting in higher X-ray-induced DNA damage in cultured 4T1-luc cells. Ultimately, NaYF4:Tb@RB elicited significant cytotoxicity after X-ray irradiation (0.5 Gy), while inducing marginal cytotoxicity without X-ray irradiation. Altogether, this research proposes a promising ScNP design for efficient X-PDT agents that make the better use of incident X-ray energy while causing the fewest side effects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fotoquimioterapia/métodos , Rosa Bengala/farmacologia , Raios X , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico
15.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232657

RESUMO

Prostate cancer can significantly shorten the lifetime of a patient, even if he is diagnosed at an early stage. The development of minimally-invasive focal therapies such as photodynamic therapy to reduce the number of neoplastic cells while sparing delicate structures is extremely advantageous for treating prostate cancer. This study investigates the effect of photodynamic therapy performed in prostate tissue samples in vitro, using quantitative magnetic resonance imaging and histopathological analysis. Prostate tissue samples were treated with oxygenated solutions of Rose Bengal (RB) or protoporphyrin IX disodium salt (PpIX), illuminated with visible light, and then analyzed for changes in morphology by microscopy and by measurement of spin-lattice and spin-spin relaxation times at 1.5 Tesla. In the treated prostate tissue samples, histopathological images revealed chromatin condensation and swelling of the stroma, and in some cases, thrombotic necrosis and swelling of the stroma accompanied by pyknotic nuclei occurred. Several samples had protein fragments in the stroma. Magnetic resonance imaging of the treated prostate tissue samples revealed differences in the spin-lattice and spin-spin relaxation times prior to and post photodynamic action.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Cromatina , Humanos , Imageamento por Ressonância Magnética , Masculino , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Protoporfirinas/uso terapêutico , Rosa Bengala/farmacologia
16.
Turkiye Parazitol Derg ; 46(3): 172-179, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094116

RESUMO

Objective: There is a need for new treatment options for treating Leishmaniasis, since there is no standard treatment scheme with few side effects. Sonodynamic therapy (SDT) is also a candidate to be one of these options. SDT is a treatment method based on the simultaneous combination of low-intensity ultrasound and a sonosensitizer, and the generation of reactive oxygen species in cells in the presence of molecular oxygen. Sonosensitizer, ultrasound, and molecular oxygen individually, these components are not toxic, but when combined form cytotoxic reactive oxygen species In this study, we evaluated the effect of rose bengal (RB)-mediated SDT on Leishmania tropica (L. tropica) promastigotes. Methods: SDT was performed using different concentrations of RB (20, 40, and 80 µM) and ultrasound at a frequency of 1 MHz with an intensity of 1, 1.5, and 2 W/cm2 for 10, 20, and 30 min. Results: Incubation with different RB concentrations applied alone had no effect on L. tropica promastigotes. Ultrasound application time for L. tropica promastigotes alone was determined as 10 min. Ultrasound application intensity showed more significant results at 2 W/cm2. It was determined that the number of promastigotes was lower than that of the control group after 10 min of exposure to ultrasound at 2 W/cm2 at 1 MHz frequency for 10 min with RB (80 µM). Morphologically, round, swollen, atypical forms of the parasite with indistinguishable nuclei are observed, but typical narrow cell body forms have also been detected. Conclusion: These results showed that RB-mediated SDT on L. tropica could be a candidate treatment approach. This approach can be used for both superficial and deeply located lesions. This study emphasized the biophysical mechanisms, ultrasound exposure strategies, reliability and difficulties in the clinical practice of RB-mediated SDT on L. tropica promastigotes.


Assuntos
Leishmania tropica , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Reprodutibilidade dos Testes , Rosa Bengala/farmacologia
17.
Methods Mol Biol ; 2550: 433-441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180711

RESUMO

Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke. Currently, there are few effective treatments for the therapeutics of stroke, the second leading cause of death and a major cause of disability worldwide. As demonstrated by the high number of publications during the last two decades, there is growing interest in understanding how and if melatonin could be a possible drug for stroke in humans, given also its very low and limited toxicity. Here, we describe the detailed protocol for performing the photothrombotic model of stroke which involves the occlusion of small cerebral vessels caused by the photoactivation of the previously injected light-sensitive dye Rose Bengal. Importantly, this model allows for the study of cellular and molecular mechanisms underlying the pathophysiology of stroke and thus can be used for investigating the neuropharmacological role of melatonin and the melatonin system in stroke. In particular, future research is warranted to demonstrate how and if melatonin impacts neurodegeneration, neuroprotection, and neuro-regeneration occurring after the brain injury caused by the occlusion of cerebral vessels.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Melatonina , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
18.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010578

RESUMO

Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.


Assuntos
Astrocitoma , Exossomos , Fotoquimioterapia , Aminoácidos , Animais , Astrocitoma/tratamento farmacológico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ratos , Rosa Bengala/química , Rosa Bengala/farmacologia
19.
Photodiagnosis Photodyn Ther ; 39: 102988, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781095

RESUMO

In this study, Rose Bengal (RB) was loaded onto mesoporous silica coated gold nanorods (AuNR@SiO2-NH2) to form a novel multifunctional platform for antimicrobial therapy (AuNR@SiO2-NH2-RB). The platform combines the photothermal functions of AuNR and the photodynamic functions of RB to effectively inactivate bacteria under irradiation. Moreover, AuNR@SiO2-NH2-RB showed negligible cytotoxicity and good blood compatibility. Therefore, this work has potential significance for the development of new antibacterial agents.


Assuntos
Nanotubos , Fotoquimioterapia , Antibacterianos/farmacologia , Ouro/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Dióxido de Silício
20.
Photodiagnosis Photodyn Ther ; 39: 102912, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35597443

RESUMO

AIM: The present study intended to evaluate the shear bond strength (SBS) of resin cement bonded to caries affected dentin (CAD) after disinfection with rose Bengal (RB), Ti-Sapphire Laser, Ammonium Hexafluorosilicate (NH4)2[SiF6], and ozonated water (O3). MATERIAL AND METHODS: A total of 100 extracted human mandibular molars were acquired using caries severity code, 6 of the ICDAS criteria. To achieve homogeneity and prevent size-biased distributions, the average cavity preparation of all specimens had a depth of 2 mm and a breadth of 3 mm. Specimens were divided into five groups (n = 20) at random according to type of disinfection. Group 1: control group, Group 2: RB, Group 3: O3, Group 4: Ti-sapphire laser, and Group 5: (NH4)2[SiF6]. All specimens were etch and rinsed, bonding agent was applied and restored with resin cement. Estimation of SBS was performed by placing samples (10/group) in universal testing machine. Stereomicroscope under 40 × magnification was employed for failure mode analysis (FMA). Statistical analysis was executed using the ANOVA and the Tukey multiple test (p<0.05). RESULTS: The highest SBS was demonstrated in the control group when CAD bonded to resin cement without disinfection (18.22±1.14 MPa). Likewise, the lowest SBS values were unveiled by CAD disinfection with O3 (12.44±1.36 MPa). Similarly, CAD when disinfected with RB (16.25±1.01 MPa) and Ti-sapphire laser (16.25±1.22 MPa) bonded to resin cement exhibited comparable bond results (p>0.05). CONCLUSION: Caries affected dentin when treated with etch and rinse technique without the use of disinfectant displayed the highest SBS. However, it was seen that utilization of various disinfectants altered the adhesion capacity or bonding efficacy of caries-affected dentin.


Assuntos
Compostos de Amônio , Fotoquimioterapia , Óxido de Alumínio , Suscetibilidade à Cárie Dentária , Dentina , Desinfecção , Humanos , Teste de Materiais , Fotoquimioterapia/métodos , Cimentos de Resina/uso terapêutico , Rosa Bengala/farmacologia , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA