Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animal ; 18(4): 101134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593679

RESUMO

Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.


Assuntos
Plantas Medicinais , Animais , Plantas Medicinais/metabolismo , Metano/metabolismo , Ruminantes/metabolismo , Fermentação , Rúmen/metabolismo
2.
Animal ; 17(8): 100910, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37544052

RESUMO

Ligularia virgaurea is the most widely functional native herbage in the alpine meadow pastures of the Qinghai-Tibet Plateau (QTP) and has multiple pharmacological and biological activities. The effect of L. virgaurea as a dietary component on the digestion and metabolism of sheep was evaluated by conducting feeding trials in metabolic cages. Thirty-two Tibetan yearling rams (29 ± 1.56 kg BW) were randomly allotted to four groups included in a completely randomised design with eight animals per treatment. Sheep were fed a basal diet (freshly native pasture) without the addition of L. virgaurea (control) or with the addition of L. virgaurea (100, 200, or 300 mg/kg BW per day) for 45 days. Addition of L. virgaurea to the diet of Tibetan sheep was found to influence the average daily gain (quadratic [Q], P < 0.001), feed conversion ratio (Q, P = 0.002), CH4 emissions (linear [L], P = 0.029), DM (Q, P = 0.012), neutral detergent fibre (Q, P = 0.017), acid detergent fibre (ADF) (Q, P = 0.027), and ether extract (EE) intake (Q, P = 0.026). Apparently, different levels of L. virgaurea affected the digestibility coefficients of DM, ADF, and EE (L, P > 0.05; Q, P < 0.05). The nitrogen (N) intake (Q, P = 0.001), retained nitrogen (Q, P < 0.001), and N utilisation efficiency (L, P > 0.05; Q, P ≤ 0.001) were also affected by the dietary inclusion of L. virgaurea. Effects of L. virgaurea feeding were also witnessed on methane energy (CH4-E) (L, P = 0.029), gross energy (GE) (Q, P = 0.013), digestible energy (DE) (Q, P = 0.015), and metabolisable energy (ME) intake (Q, P = 0.015). Energy utilisation efficiency expressed as a proportion of GE intake (DE/GE intake, ME/GE intake, ME/DE intake, FE/GE intake, and CH4-E/GE intake) manifested quadratic changes (P < 0.05) with the increase in the L. virgaurea supplementation level. The addition of L. virgaurea increased the activity of superoxide dismutase (Q, P = 0.026) and glutathione peroxidase activity (Q, P = 0.039) in the serum. Overall, the greatest improvement of feed digestibility, N retention, energy utilisation, and antioxidant capacity of Tibetan sheep was yielded by the inclusion of 200 mg/kg BW per day of L. virgaurea. Therefore, the addition of an appropriate amount of L. virgaurea to the diet of Tibetan sheep is safe and natural, and may enhance the sustainability of small ruminant production systems in QTP areas.


Assuntos
Digestão , Ligularia , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/metabolismo , Detergentes , Dieta/veterinária , Suplementos Nutricionais , Metabolismo Energético , Nitrogênio/metabolismo , Ruminantes/metabolismo , Ovinos , Tibet
3.
Vet Clin North Am Food Anim Pract ; 39(3): 505-516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455235

RESUMO

Trace minerals and vitamins are essential for optimizing feedlot cattle growth, health, and carcass characteristics. Understanding factors that influence trace mineral and vitamin absorption and metabolism is important when formulating feedlot cattle diets. Current feedlot industry supplementation practices typically exceed published trace mineral requirements by a factor of 2 to 4. Therefore, the intent of this review is to briefly discuss the functions of trace minerals and vitamins that are typically supplemented in feedlot diets and to examine the impact of dose of trace mineral or vitamin on growth performance, health, and carcass characteristics of feedlot cattle.


Assuntos
Oligoelementos , Vitaminas , Bovinos , Animais , Suplementos Nutricionais , Vitamina A , Dieta/veterinária , Ruminantes/metabolismo , Ração Animal/análise , Minerais/metabolismo
4.
J Comp Pathol ; 203: 23-25, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236008

RESUMO

Thiolation can convert molybdate (MoO4) into a series of thiomolybdates (MoSxO4-x) in the rumen, terminating in tetrathiomolybdate (MoS4), a potent antagonist of copper absorption and, if absorbed, donor of reactive sulphide in tissues. Systemic exposure to MoS4 increases trichloroacetic acid-insoluble copper (TCAI Cu) concentrations in the plasma of ruminants and induction of TCAI Cu in rats given MoO4 in drinking water would support the hypothesis that rats, like ruminants, can thiolate MoO4. Data on TCAI Cu are presented from two experiments involving MoO4 supplementation that had broader objectives. In experiment 1, plasma Cu concentrations (P Cu) tripled in female rats infected with Nippostrongylus brasiliensis after only 5 days exposure to drinking water containing 70 mg Mo L-1, due largely to an increase in TCAI Cu; activities of erythrocyte superoxide dismutase and plasma caeruloplasmin oxidase (CpOA) were unaffected. Exposure for 45-51 days did not raise P Cu further but TCA-soluble (TCAS) Cu concentrations increased temporarily 5 days post infection (dpi) and weakened the linear relationship between CpOA and TCAS Cu. In experiment 2, infected rats were given less MoO4 (10 mg Mo L-1), with or without iron (Fe, 300 mg L-1), for 67 days and killed 7 or 9 dpi. P Cu was again tripled by MoO4 but co-supplementation with Fe reduced TCAI Cu from 65 ± 8.9 to 36 ± 3.8 µmol L-l. Alone, Fe and MoO4 each reduced TCAS Cu in females and males when values were higher (7 and 9 dpi, respectively). Thiolation probably occurred in the large intestine but was inhibited by precipitation of sulphide as ferrous sulphide. Fe alone may have inhibited caeruloplasmin synthesis during the acute phase response to infection, which impacts thiomolybdate metabolism.


Assuntos
Cobre , Água Potável , Feminino , Masculino , Animais , Ratos , Cobre/metabolismo , Ferro , Água Potável/metabolismo , Ácido Tricloroacético , Nippostrongylus/metabolismo , Ceruloplasmina/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Ruminantes/metabolismo , Suplementos Nutricionais
5.
Nutrients ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771316

RESUMO

Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet.


Assuntos
Ácidos Graxos trans , Feminino , Camundongos , Animais , Ácidos Graxos trans/efeitos adversos , Lecitinas , Paladar , Camundongos Endogâmicos C57BL , Ruminantes/metabolismo , Ácidos Graxos/metabolismo
6.
Anim Sci J ; 93(1): e13765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36065082

RESUMO

Extracts of Acacia and Quebracho have been used as a feed additive in ruminant diets; the effects, however, have been varied. This study used a meta-analysis approach to evaluate the use of those extracts on nutrient utilization, performance, and methane production of ruminants. A database was developed from 37 published papers comprising 152 dietary treatments. The result showed that a higher concentration of tannins was associated with a decrease (p < 0.05) in nutrient intake and digestibility. An increasing tannin concentration was negatively correlated with ammonia, acetic acid, and the ratio of acetic to propionic acid. Methane production decreased (p < 0.01) with the increasing tannin concentration. Nitrogen (N) balance parameters were not affected by the tannin concentrations, but fecal N excretion increased (p < 0.01) as the tannin concentration increased. The relationships between the Acacia and Quebracho and the changes in organic matter intake, milk fat concentration, butyric acid, valeric acid, and methane production were significantly different. In conclusion, it is possible to use both condensed tannins (CT) extracts as a methane emission mitigation without impairing the ruminant performance. Furthermore, the Quebracho showed more pronounced to decrease ruminal protein degradation and lower methane emission than the Acacia.


Assuntos
Acacia , Taninos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Metano/metabolismo , Nutrientes/análise , Extratos Vegetais , Rúmen/metabolismo , Ruminantes/metabolismo
7.
Molecules ; 26(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299448

RESUMO

Robust and selective quantification methods are required to better analyze feed supplementation effectiveness with specific amino acids. In this work, a reversed-phase high-performance liquid chromatography method with fluorescence detection is proposed and validated for lysine quantification, one of the most limiting amino acids in ruminant nutrition and essential towards milk production. To assess and widen method applicability, different matrices were considered: namely Li2CO3 buffer (the chosen standard reaction buffer), phosphate buffer solution (to mimic media in cellular studies), and rumen inoculum. The method was validated for all three matrices and found to be selective, accurate (92% ± 2%), and precise at both the inter- and intra-day levels in concentrations up to 225 µM, with detection and quantification limits lower than 1.24 and 4.14 µM, respectively. Sample stability was evaluated when stored at room temperature, 4 °C, and -20 °C, showing consistency for up to 48 h regardless of the matrix. Finally, the developed method was applied in the quantification of lysine on real samples. The results presented indicate that the proposed method can be applied towards free lysine quantification in ruminant feeding studies and potentially be of great benefit to dairy cow nutrition supplementation and optimization.


Assuntos
Ração Animal/análise , Lisina/análise , Lisina/química , Aminoácidos/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Suplementos Nutricionais/análise , Reprodutibilidade dos Testes , Ruminantes/metabolismo
8.
PLoS One ; 15(3): e0216187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168348

RESUMO

A systematic review and meta-analysis were conducted to predict and identify ways to increase conjugated linoleic acid (CLA) formation in ruminant-derived products to treat human health issues with dietary tannins. The objective was to compare and confirm the effects of dietary tannins on CLA formation by analyzing in vitro and/or in vivo studies. We reported the results of the meta-analysis based on numerical data from 38 selected publications consisting of 3712 treatments. Generally, via multiple pathways, the CLA formation increased when dietary tannins increased. Concurrently, dietary tannins increased Δ9 desaturation and the CLA indices in milk and meat (P < 0.05 and P < 0.001, with average R2 values of 0.23 and 0.44, respectively), but they did not change the rumen fermentation characteristics, including total volatile fatty acids (mmol/L) and their acid components. In vitro observations may accurately predict in vivo results. Unfortunately, there was no relationship between in vitro observations and in vivo results (R2 < 0.10), indicating that it is difficult to predict CLA formation in vivo considering in vitro observations. According to the statistical meta-analysis results regarding animal aspects, the ranges of tannin levels required for CLA formation in vitro and in vivo were approximately 0.1-20 g/kg dry matter (DM) (P < 0.001) and 2.1-80 g/kg DM (P < 0.001), respectively. In conclusion, the in vivo method was more suitable for the direct observation of fatty acid transformation than the in vitro method.


Assuntos
Ácidos Linoleicos Conjugados/metabolismo , Ruminantes/metabolismo , Taninos/metabolismo , Animais , Técnicas de Cultura Celular por Lotes , Viés , Carne/análise , Leite/metabolismo , Análise de Regressão
9.
Animal ; 14(S1): s29-s43, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32024566

RESUMO

In comparison to monogastric animals, ruminants show some peculiarities in respect to the regulation of mineral homeostasis, which can be regarded as a concerted interplay between gastrointestinal absorption, renal excretion and bone mobilisation to maintain physiological Ca and phosphate (Pi) concentrations in serum. Intestinal absorption of Ca or Pi is mediated by two general mechanisms: paracellular, passive transport dominates when luminal Ca or Pi concentrations are high and transcellular. The contribution of active transport becomes more important when dietary Ca or Pi supply is restricted or the demand increased. Both pathways are modulated directly by dietary interventions, influenced by age and regulated by endocrine factors such as 1,25-dihydroxyvitamin D3. Similar transport processes are observed in the kidney. After filtration, Ca and Pi are resorbed along the nephron. However, as urinary Ca and Pi excretion is very low in ruminants, the regulation of these renal pathways differs from that described for monogastric species, too. Furthermore, salivary secretion, as part of endogenous Pi recycling, and bone mobilisation participate in the maintenance of Ca and Pi homeostasis in ruminants. Saliva contains large amounts of Pi for buffering rumen pH and to ensure optimal conditions for the rumen microbiome. The skeleton is a major reservoir of Ca and Pi to compensate for discrepancies between demand and uptake. But alterations of the regulation of mineral homeostasis induced by other dietary factors such as a low protein diet were observed in growing ruminants. In addition, metabolic changes, for example, at the onset of lactation have pronounced effects on gastrointestinal mineral transport processes in some ruminant species. As disturbances of mineral homeostasis do not only increase the risk of the animals to develop other diseases, but are also associated with protein and energy metabolism, further research is needed to improve our knowledge of its complex regulation.


Assuntos
Cálcio da Dieta/metabolismo , Minerais/metabolismo , Fósforo/metabolismo , Ruminantes/metabolismo , Animais , Transporte Biológico , Feminino , Homeostase , Absorção Intestinal , Rim/metabolismo , Lactação , Rúmen/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
10.
Animal ; 14(S1): s78-s86, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32024572

RESUMO

The rumen contains a great diversity of prokaryotic and eukaryotic microorganisms that allow the ruminant to utilize ligno-cellulose material and to convert non-protein nitrogen into microbial protein to obtain energy and amino acids. However, rumen fermentation also has potential deleterious consequences associated with the emissions of greenhouse gases, excessive nitrogen excreted in manure and may also adversely influence the nutritional value of ruminant products. While several strategies for optimizing the energy and nitrogen use by ruminants have been suggested, a better understanding of the key microorganisms involved and their activities is essential to manipulate rumen processes successfully. Diet is the most obvious factor influencing the rumen microbiome and fermentation. Among dietary interventions, the ban of antimicrobial growth promoters in animal production systems has led to an increasing interest in the use of plant extracts to manipulate the rumen. Plant extracts (e.g. saponins, polyphenol compounds, essential oils) have shown potential to decrease methane emissions and improve the efficiency of nitrogen utilization; however, there are limitations such as inconsistency, transient and adverse effects for their use as feed additives for ruminants. It has been proved that the host animal may also influence the rumen microbial population both as a heritable trait and through the effect of early-life nutrition on microbial population structure and function in adult ruminants. Recent developments have allowed phylogenetic information to be upscaled to metabolic information; however, research effort on cultivation of microorganisms for an in-depth study and characterization is needed. The introduction and integration of metagenomic, transcriptomic, proteomic and metabolomic techniques is offering the greatest potential of reaching a truly systems-level understanding of the rumen; studies have been focused on the prokaryotic population and a broader approach needs to be considered.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Metagenoma , Metano/metabolismo , Proteoma , Ruminantes/microbiologia , Transcriptoma , Animais , Dieta/veterinária , Fermentação , Perfilação da Expressão Gênica/veterinária , Metabolômica , Metagenômica , Nitrogênio/metabolismo , Filogenia , Extratos Vegetais/metabolismo , Proteômica , Rúmen/metabolismo , Ruminantes/metabolismo
11.
Biochimie ; 169: 144-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837411

RESUMO

Since the early 2010s, dietary trans-palmitoleic acid (trans-9-hexadecenoic acid, trans-9-C16:1 in the Δ-nomenclature, trans-C16:1 n-7 in the Ω-nomenclature, TPA) has been epidemiologically associated with a lower risk of type 2 diabetes in humans. Thanks to these findings, TPA has become a nutrient of interest. However, there is a lot of unresolved crucial questions about this dietary fatty acid. Is TPA a natural trans fatty acid? What kind of foods ensures intakes in TPA? What about its metabolism? How does dietary TPA act to prevent type 2 diabetes? What are the biological mechanisms involved in this physiological effect? Clearly, it is high time to answer all these questions with the very first review specifically dedicated to this intriguing fatty acid. Aiming at getting an overview, we shall try to give an answer to all these questions, relying on appropriate and accurate scientific results. Briefly, this review underlines that TPA is indeed a natural trans fatty acid which is metabolically linked to other well-known natural trans fatty acids. Knowledge on physiological impacts of dietary TPA is limited so far to epidemiological data, awaiting for supplementation studies. In this multidisciplinary review, we also emphasize on methodological topics related to TPA, particularly when it comes to the quantification of TPA in foods and human plasma. As a conclusion, we highlight promising health benefits of dietary TPA; however, there is a strong lack in well-designed studies in both the nutritional and the analytical area.


Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/metabolismo , Obesidade/metabolismo , Ácidos Graxos trans/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta/métodos , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Monoinsaturados/síntese química , Ácidos Graxos Monoinsaturados/isolamento & purificação , Humanos , Hidrogenação , Ácidos Linoleicos Conjugados/administração & dosagem , Ácidos Linoleicos Conjugados/metabolismo , Carne/análise , Leite/química , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ruminantes/metabolismo , Estereoisomerismo , Ácidos Graxos trans/administração & dosagem , Ácidos Graxos trans/síntese química , Ácidos Graxos trans/isolamento & purificação
12.
Glycoconj J ; 35(6): 561-574, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30467790

RESUMO

Mammalian milk/colostrum usually contains oligosaccharides along with the predominant disaccharide lactose. It has been found that the number and identity of these milk oligosaccharides varies among mammalian species. Oligosaccharides predominate over lactose in the milk/colostrum of Arctoidea species (Carnivora), whereas lactose predominates over milk oligosaccharides in Artiodactyla including cow, sheep, goat, camel, reindeer and pig. To clarify whether heterogeneity of a variety of milk oligosaccharides is found within other species of Artiodactyla, they were studied in the milk of giraffe, sitatunga, deer and water buffalo. The following oligosaccharides were found: Neu5Ac(α2-3)[GalNAc(ß1-4)]Gal(ß1-4)Glc (GM2 tetrasaccharide), and Gal(α1-3)Gal(ß1-4)Glc (isoglobotriose) in giraffe milk; Neu5Ac(α2-3)Gal(ß1-4)Glc (3'-SL), Neu5Ac(α2-6)Gal(ß1-4)Glc (6'-SL), Gal(α1-4)Gal(ß1-4)Glc (globotriose) and isoglobotriose in sitatunga colostrum; Gal(ß1-3)Gal(ß1-4)Glc (3'-GL), Gal(ß1-6)Gal(ß1-4)Glc (6'-GL), isoglobotriose, Gal(ß1-4)GlcNAc(ß1-3)Gal(ß1-4)Glc (lacto-N-neotetraose, LNnT), Gal(ß1-4)Glc-3'-O-SO3 (3'-O-lactose sulphate) in deer milk; 3'-GL, isoglobotriose and Gal(ß1-3)Gal(ß1-3)Gal(ß1-4)Glc (3',3″-digalactosyllactose, DGL) in water buffalo colostrum. Thus it was shown that the milk oligosaccharides are heterogeneous among these Artiodactyla species.


Assuntos
Búfalos/metabolismo , Cervos/metabolismo , Girafas/metabolismo , Leite/química , Oligossacarídeos/química , Ruminantes/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Colostro/química , Feminino , Espectroscopia de Prótons por Ressonância Magnética
13.
Animal ; 12(s2): s295-s309, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318027

RESUMO

Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food-feed-fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food-feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide.


Assuntos
Ração Animal/análise , Ácidos Graxos/análise , Metano/metabolismo , Leite/química , Valor Nutritivo , Ruminantes/metabolismo , Animais , Brassicaceae , Mudança Climática , Produtos Agrícolas , Suplementos Nutricionais , Fabaceae , Feminino , Lignina/metabolismo , Carne/análise , Óleos de Plantas/metabolismo , Poaceae
14.
Animal ; 12(s2): s272-s281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30139411

RESUMO

Growth in demand for foods with potentially beneficial effects on consumer health has motivated increased interest in developing strategies for improving the nutritional quality of ruminant-derived products. Manipulation of the rumen environment offers the opportunity to modify the lipid composition of milk and meat by changing the availability of fatty acids (FA) for mammary and intramuscular lipid uptake. Dietary supplementation with marine lipids, plant secondary compounds and direct-fed microbials has shown promising results. In this review, we have compiled information about their effects on the concentration of putative desirable FA (e.g. c9t11-CLA and vaccenic, oleic, linoleic and linolenic acids) in ruminal digesta, milk and intramuscular fat. Marine lipids rich in very long-chain n-3 polyunsaturated fatty acids (PUFA) efficiently inhibit the last step of C18 FA biohydrogenation (BH) in the bovine, ovine and caprine, increasing the outflow of t11-18:1 from the rumen and improving the concentration of c9t11-CLA in the final products, but increments in t10-18:1 are also often found due to shifts toward alternative BH pathways. Direct-fed microbials appear to favourably modify rumen lipid metabolism but information is still very limited, whereas a wide variety of plant secondary compounds, including tannins, polyphenol oxidase, essential oils, oxygenated FA and saponins, has been examined with varying success. For example, the effectiveness of tannins and essential oils is as yet controversial, with some studies showing no effects and others a positive impact on inhibiting the first step of BH of PUFA or, less commonly, the final step. Further investigation is required to unravel the causes of inconsistent results, which may be due to the diversity in active components, ruminant species, dosage, basal diet composition and time on treatments. Likewise, research must continue to address ways to mitigate negative side-effects of some supplements on animal performance (particularly, milk fat depression) and product quality (e.g. altered oxidative stability and shelf-life).


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Carne/análise , Leite/química , Ruminantes/metabolismo , Animais , Bovinos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Insaturados/administração & dosagem , Feminino , Óleos de Peixe/administração & dosagem , Cabras/metabolismo , Probióticos , Rúmen/metabolismo , Ovinos/metabolismo
15.
Biol Trace Elem Res ; 186(2): 305-321, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29594691

RESUMO

With the increase in the global herd, the use of metabolic modifiers has become an important area for many researchers looking for a supraphysiological diet to improve production parameters. For improving the performance of high yielding cows, the optimal balance of all nutrients including microminerals is important. Chromium (Cr) is one of the important micronutrients which plays an important role in metabolism of ruminants. Experimental studies have found that Cr could change performance, immune responses, glucose and fatty acid metabolism, and antioxidant status in dairy cows. In some studies, Cr supplementation improved dry matter intake, milk production, and milk composition of dairy cows in the early, mid, or late stage of lactation. Also, in some studies, performance of growing animal, immune response, and some blood parameters responded positively to Cr supplementation. In conclusion, the effects of Cr supplementation on performance of ruminants are inconsistent; however, its long-term effects on health, productivity, immune system, and antioxidant activity of ruminants still need to be investigated.


Assuntos
Antioxidantes/metabolismo , Cromo/farmacologia , Suplementos Nutricionais , Imunocompetência/efeitos dos fármacos , Lactação/efeitos dos fármacos , Ruminantes/sangue , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bovinos , Cromo/administração & dosagem , Feminino , Ruminantes/metabolismo
16.
J Sci Food Agric ; 98(12): 4462-4470, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29457650

RESUMO

BACKGROUND: A laboratory-silo study was conducted to evaluate the fermentation quality, feed-nutritive value and aerobic stability of sweet sorghum silage with or without oil-extracted microalgae supplementation. Sweet sorghum was mixed with four microalgae levels (0%, 1%, 2% and 3% on a dry matter basis; control, M1, M2 and M3, respectively) and ensiled for 45 d. Further, the four experimental silages were subjected to an aerobic stability test lasting 7 d. RESULTS: All the silages except M3 silage had good fermentative characteristics with low pH and ammonia nitrogen concentrations, and high lactic acid concentrations and favorable microbial parameters. Meanwhile, oil-extracted microalgae supplementation improved the feed-nutritional value of sweet sorghum silage. Fibre (neutral detergent fibre, acid detergent fibre, acid detergent lignin and cellulose) concentrations decreased, while dry matter and crude protein levels markedly increased (P < 0.05). Compared with the control (69.7 h), treatments M2 and M3 improved the aerobic stability of sweet sorghum silage by 43.8% and more than 143% respectively, and decreased the clostridia spore counts during the stage of air exposure. CONCLUSION: Sweet sorghum silage produced with 2% oil-extracted microalgae addition was the most suitable for animal use due to the optimal balance of fermentation quality, feed-nutritional value and aerobic stability, which merits further in vivo studies using grazing ruminants. © 2018 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Microalgas/química , Extratos Vegetais/química , Ruminantes/metabolismo , Sorghum/química , Animais , Clostridium/crescimento & desenvolvimento , Clostridium/metabolismo , Fermentação , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/metabolismo , Microalgas/metabolismo , Valor Nutritivo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Silagem/análise , Sorghum/metabolismo , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
17.
Environ Sci Pollut Res Int ; 25(1): 181-190, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29116537

RESUMO

Protein quality plays a key role than quantity in growth, production, and reproduction of ruminants. Application of high concentration of dietary crude protein (CP) did not balance the proportion of these limiting amino acids (AA) at duodenal digesta of high producing dairy cow. Thus, dietary supplementation of rumen-protected AA is recommended to sustain the physiological, productive, and reproductive performance of ruminants. Poor metabolism of high CP diets in rumen excretes excessive nitrogen (N) through urine and feces in the environment. This excretion is usually in the form of nitrous oxide, nitric oxide, nitrate, and ammonia. In addition to producing gases like methane, hydrogen carbon dioxide pollutes and has a potentially negative impact on air, soil, and water quality. Data specify that supplementation of top-limiting AA methionine and lysine (Met + Lys) in ruminants' ration is one of the best approaches to enhance the utilization of feed protein and alleviate negative biohazards of CP in ruminants' ration. In conclusion, many in vivo and in vitro studies were reviewed and reported that low dietary CP with supplemental rumen-protected AA (Met + Lys) showed a good ability to reduce N losses or NH3. Also, it helps in declining gases emission and decreasing soil or water contamination without negative impacts on animal performance. Finally, further studies are needed on genetic and molecular basis to explain the impact of Met + Lys supplementation on co-occurrence patterns of microbiome of rumen which shine new light on bacteria, methanogen, and protozoal interaction in ruminants.


Assuntos
Aminoácidos/metabolismo , Ração Animal/normas , Fenômenos Fisiológicos da Nutrição Animal , Proteínas Alimentares/metabolismo , Poluentes Ambientais/análise , Ruminantes/metabolismo , Animais , Ecossistema , Fezes/química , Metano/análise , Nitrogênio/urina , Rúmen/metabolismo
18.
J Appl Microbiol ; 123(4): 782-797, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28557277

RESUMO

Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double-bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.


Assuntos
Gorduras na Dieta/metabolismo , Microbioma Gastrointestinal , Rúmen/microbiologia , Ruminantes/metabolismo , Ração Animal/análise , Animais , Gorduras na Dieta/análise , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Rúmen/metabolismo , Ruminantes/microbiologia
19.
Appl Environ Microbiol ; 83(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526787

RESUMO

Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H2 and CO2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions.IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions.


Assuntos
Produtos Biológicos/farmacologia , Técnicas de Cultura/métodos , Metano/metabolismo , Methanobrevibacter/efeitos dos fármacos , Mathanococcus/efeitos dos fármacos , Rúmen/microbiologia , Ruminantes/microbiologia , Animais , Técnicas de Cultura/instrumentação , Avaliação Pré-Clínica de Medicamentos , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/metabolismo , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Rúmen/metabolismo , Ruminantes/metabolismo
20.
J Sci Food Agric ; 97(7): 1969-1978, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27925211

RESUMO

In the last few decades there has been increased consumer interest in the fatty acid (FA) composition of ruminant meat due to its content of saturated FAs, which have been implicated in diseases associated with modern life. However, recent studies have questioned the recommendations to reduce intake of fat, saturated FAs and cholesterol as a means of reducing the risk of cardiovascular disease. Interestingly, ruminant meat has some bioactive lipids such as C18:1t11 and C18:2 c9, t11 which have been reported to have positive effects on human health. In order to improve muscle fat composition from a human health standpoint, oilseeds, plant oils and marine oils can be used in ruminant diets. On the other hand, molecular mechanisms play an important role in the alteration of the FA composition of muscle fat. Genetics offer a wide range of possibilities for improvement of muscle fat composition by identifying different loci underlying the expression of quantitative traits. While significant progress has been made in characterizing the influence of diet on the FA composition of ruminant meat, the use of genetic tools can favor genotypes that could maximize their genetic potential through the diet. © 2016 Society of Chemical Industry.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Lipídeos/química , Carne/análise , Ruminantes/metabolismo , Criação de Animais Domésticos , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Metabolismo dos Lipídeos , Ruminantes/genética , Ruminantes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA