Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 132(8): 1-5, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426371

RESUMO

RASopathies are a family of rare autosomal dominant disorders that affect the canonical Ras/MAPK signaling pathway and manifest as neurodevelopmental systemic syndromes, including Costello syndrome (CS). In this issue of the JCI, Dard et al. describe the molecular determinants of CS using a myriad of genetically modified models, including mice expressing HRAS p.G12S, patient-derived skin fibroblasts, hiPSC-derived human cardiomyocytes, an HRAS p.G12V zebrafish model, and human lentivirally induced fibroblasts overexpressing HRAS p.G12S or HRAS p.G12A. Mitochondrial proteostasis and oxidative phosphorylation were altered in CS, and inhibition of the AMPK signaling pathway mediated bioenergetic changes. Importantly, the pharmacological induction of this pathway restored cardiac function and reduced the developmental defects associated with CS. These findings identify a role for altered bioenergetics and provide insights into more effective treatment strategies for patients with RASopathies.


Assuntos
Síndrome de Costello , Peixe-Zebra , Animais , Síndrome de Costello/metabolismo , Metabolismo Energético , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
2.
Am J Med Genet A ; 188(2): 422-430, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913244

RESUMO

Costello syndrome (CS) is a neurodevelopmental disorder with a distinctive musculoskeletal phenotype and reduced bone mineral density (BMD) caused by activating de novo mutations in the HRAS gene. Herein, we report the results of a prospective study evaluating the efficacy of a 4-year vitamin D supplementation on BMD and bone health. A cohort of 16 individuals ranging from pediatric to adult age with molecularly confirmed CS underwent dosages of bone metabolism biomarkers (serum/urine) and dual-energy X-ray absorptiometry (DXA) scans to assess bone and body composition parameters. Results were compared to age-matched control groups. At baseline evaluation, BMD was significantly reduced (p ≤ 0.05) compared to controls, as were the 25(OH)vitD levels. Following the 4-year time interval, despite vitamin D supplementation therapy at adequate dosages, no significant improvement in BMD was observed. The present data confirm that 25(OH)vitD and BMD parameters are reduced in CS, and vitamin D supplementation is not sufficient to restore proper BMD values. Based on this evidence, routine monitoring of bone homeostasis to prevent bone deterioration and possible fractures in adult patients with CS is highly recommended.


Assuntos
Síndrome de Costello , Absorciometria de Fóton , Densidade Óssea , Osso e Ossos , Criança , Síndrome de Costello/complicações , Síndrome de Costello/genética , Seguimentos , Homeostase , Humanos , Estudos Prospectivos , Vitamina D/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA