Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172668

RESUMO

BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.


Assuntos
Síndrome de Lesch-Nyhan , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Ácido Fólico
2.
J Neural Transm (Vienna) ; 120(9): 1359-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23400363

RESUMO

In the present study, we investigate the in vitro effect of hypoxanthine on acetylcholinesterase and butyrylcholinesterase activities in the hippocampus, striatum, cerebral cortex and serum of 15-, 30- and 60-day-old rats. Furthermore, we also evaluated the influence of antioxidants, namely α-tocopherol (trolox) and ascorbic acid, and allopurinol to investigate the possible participation of free radicals and uric acid in the effects elicited by hypoxanthine on these parameters. Acetylcholinesterase and butyrylcholinesterase activities were determined according to Ellman et al. (Biochem Pharmacol 7:88-95, 1961), with some modifications. Hypoxanthine (10.0 µM), when added to the incubation medium, enhanced acetylcholinesterase activity in the hippocampus and striatum of 15- and 30-day-old rats and reduced butyrylcholinesterase activity in the serum of 60-day-old rats. The administration of allopurinol and/or antioxidants partially prevented the alterations caused by hypoxanthine in acetylcholinesterase and butyrylcholinesterase activities in the cerebrum and serum of rats. Data indicate that hypoxanthine alters cholinesterase activities, probably through free radicals and uric acid production since the alterations were prevented by the administration of allopurinol and antioxidants. It is presumed that the cholinesterase system may be associated, at least in part, with the neuronal dysfunction observed in patients affected by Lesch-Nyhan disease. In addition, although extrapolation of findings from animal experiments to humans is difficult, it is conceivable that these vitamins and allopurinol might serve as an adjuvant therapy to avoid progression of brain damage in patients affected by this disease.


Assuntos
Alopurinol/farmacologia , Antioxidantes/farmacologia , Colinesterases/metabolismo , Inibidores Enzimáticos/farmacologia , Hipoxantina/farmacologia , Acetilcolinesterase/metabolismo , Análise de Variância , Animais , Ácido Ascórbico/farmacologia , Butirilcolinesterase/metabolismo , Radicais Livres/metabolismo , Hipoxantina/líquido cefalorraquidiano , Síndrome de Lesch-Nyhan/metabolismo , Ratos , Ratos Wistar , Ácido Úrico/metabolismo , alfa-Tocoferol/farmacologia
3.
Neurochem Int ; 52(6): 1276-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18295933

RESUMO

We previously demonstrated that intrastriatal injection of hypoxanthine, the major metabolite accumulating in Lesch-Nyhan disease, inhibited Na+,K+-ATPase activity and induced oxidative stress in rat striatum. In the present study, we evaluated the action of vitamins E and C on the biochemical alteration induced by hypoxanthine administration on Na+,K+-ATPase, TBARS, TRAP, as well as on superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities in striatum of adult rats. Animals received pretreatment with vitamins E and C or saline during 7 days. Twelve hours after the last injection of vitamins or saline, animals were divided into two groups: (1) vehicle-injected group and (2) hypoxanthine-injected group. For all parameters investigated in this research, animals were sacrificed 30 min after drug infusion. Results showed that pretreatment with vitamins E and C prevented hypoxanthine-mediated effects on Na+,K+-ATPase, TBARS and antioxidant enzymes (SOD, CAT and GPx) activities; however the reduction on TRAP was not prevented by these vitamins. Although extrapolation of findings from animal experiments to humans is difficult, it is conceivable that these vitamins might serve as an adjuvant therapy in order to avoid progression of striatal damage in patients affected by Lesch-Nyhan disease.


Assuntos
Ácido Ascórbico/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipoxantina/antagonistas & inibidores , Síndrome de Lesch-Nyhan/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Vitamina E/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Catalase/efeitos dos fármacos , Catalase/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Progressão da Doença , Radicais Livres/metabolismo , Hipoxantina/metabolismo , Hipoxantina/toxicidade , Síndrome de Lesch-Nyhan/metabolismo , Síndrome de Lesch-Nyhan/fisiopatologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Resultado do Tratamento , Vitamina E/metabolismo , Vitamina E/uso terapêutico
4.
J Inherit Metab Dis ; 27(2): 165-78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15159647

RESUMO

Hypoxanthine-guanine phosphoribosyltransferase (HPRT) is an enzyme that catalyses the conversion of hypoxanthine and guanine into their respective nucleotides. Inherited deficiency of the enzyme is associated with a loss of striatal dopamine in both mouse and man. Although HPRT is not directly involved in the metabolism of dopamine, it contributes to the supply of GTP, which is used in the first and rate-limiting step in the synthesis of tetrahydrobiopterin (BH4). Since BH4 is required as a cofactor for tyrosine hydroxylase in the synthesis of dopamine, any limitation in the supply of GTP could interfere with the synthesis of dopamine. The current studies were designed to address the hypothesis that the reduced striatal dopamine in mice with HPRT deficiency results from reduced availability of BH4. The mutant mice had small reductions in striatal BH4, with normal BH4 levels in other brain regions. Liver BH4 was normal in HPRT-deficient mutant mice, and a phenylalanine challenge test failed to reveal any evidence for impaired hepatic phenylalanine hydroxylase, another BH4-dependent enzyme. Although striatal BH4 content is not normal, supplementation with BH4 or L-dopa failed to correct the striatal dopamine deficiency of the mutant mice, suggesting that BH4 limitation is not responsible for the dopamine loss.


Assuntos
Biopterinas/análogos & derivados , Biopterinas/deficiência , Dopamina/biossíntese , Dopamina/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/metabolismo , Animais , Biopterinas/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Síndrome de Lesch-Nyhan/tratamento farmacológico , Síndrome de Lesch-Nyhan/genética , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenilalanina/sangue , Fenilalanina/farmacologia , Tirosina/sangue
5.
Proc Natl Acad Sci U S A ; 73(11): 4110-4, 1976 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1069299

RESUMO

Normal human diploid fibroblasts were able to undergo one to two cell divisions without glucose utilization in Eagle's minimum essential medium plus 10% dialyzed fetal calf serum if the medium was supplemented with hypoxanthine, thymidine, and uridine (supplemented medium termed HTU-MEM). Under these conditions, the added purine and pyrimidines were required for nucleic acid synthesis, as shown by the inability of Lesch-Nyhan fibroblasts to grow in HTU-MEM. Normal human diploid fibroblasts continued to produce lactate in HTU-MEM, but at a greatly reduced rate. Since cells grew in HTU-MEM without glucose utilization, the probable energy and carbon source was glutamine, which is present in relatively high concentration. Furthermore, the rate of glutamine utilization per cell division was 2-fold greater in HTU-MEM than in medium with 5.5 mM glucose. These results suggest that glutamine can be a major energy source for cells grown in vitro.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Divisão Celular , Células Cultivadas , Meios de Cultura , Glutamatos/metabolismo , Humanos , Hipoxantinas/metabolismo , Lactatos/metabolismo , Síndrome de Lesch-Nyhan/metabolismo , Timidina/metabolismo , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA