Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123184, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142030

RESUMO

Uranium, a key member of the actinides series, is radioactive and may cause severe environmental hazards once discharged into the water due to high toxicity. Removal of uranium via adsorption by applying tailored, functional adsorbents is at the forefront of tackling such pollution. Here, we report the optimized functionalization of the powder coal fly-ash (CFA) derived Na-P1 synthetic zeolite to the form of granules by employing the biodegradable polymer-calcium alginate (CA) and their application to remove aqueous U. The optimized synthesis showed that granules are formed at the CA concentration equals to 0.5 % wt., and that application of 1% wt. solution renders the most effective U scavengers. The maximum U adsorption capacity (qmax) increases significantly after CA modification from 44.48 mgU/g for native, powder Na-P1 zeolite to 62.53 mg U/g and 76.70 mg U/g for 0.5 % wt. and 1 % wt. CA respectively. The U adsorption follows the Radlich-Peterson isotherm model, being the highest at acidic pH (pHeq∼4). The U adsorption kinetics reveals swift U uptake, reaching equilibrium after 2h for 1 % ZACB and 3 h for 0.5 % wt. ZACB following the pseudo-second-order (PSO) kinetic model. SEM-EDXS investigation elucidates that adsorbed U occurs onto materials as an inhomogenous, well-dispersed, and micrometer-scale aggregate. Further, XPS and µ-XRF spectroscopies complementarily confirmed the hexavalent oxidation state of adsorbed U and its altered distribution on ZACBs with varying CA concentrations. U distribution was probed "in-situ" onto materials while correlations between the major elements (Al, Si, Ca, U) contributing to U scavenging were calculated and compared. Finally, a real-life coal mine wastewater (CMW) polluted by 238U and 228,226Ra was successfully purified, satisfying WHO guidelines after treatment using ZACBs. These findings offer new insights on successful yet optimized Na-P1 zeolite modification using biodegradable polymer (Ca2+-exchanged alginate) aimed at efficient U removal, displaying a near-zero environmental impact.


Assuntos
Urânio , Zeolitas , Zeolitas/química , Troca Iônica , Pós , Íons , Cinética , Sódio/química , Adsorção , Carvão Mineral , Polímeros , Concentração de Íons de Hidrogênio
2.
Dalton Trans ; 52(4): 962-970, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36597846

RESUMO

Heterobimetallic tert-butoxides of alkali metal cations with tetravalent actinide centers exhibit two distinctive structural motifs, [AnM2(OtBu)6] and [AnM3(OtBu)7] (AnIV = Th, U and MI = Li, Na, K, Rb, Cs), evidently governed by the size of the alkali metal ions. Both [AnM3(OtBu)7] AnM3 (AnIV = U, MI = Li; AnIV = Th, MI = Li, Na) and [AnM2(OtBu)6] AnM2 (AnIV = U, MI = Na-Cs; AnIV = Th, MI = K-Cs) compounds are obtained in nearly quantitative yields by reacting actinide and alkali metal silyl amides with an excess of tert-butyl alcohol. The AnM3 complexes form a cubane-type coordination motif, whereas the AnM2 complexes display a geometry resembling two face-shared bipyramids. The sodium derivatives of thorium and uranium (ThNa3 and UNa2) allow the determination of the structural transition threshold as a function of the ratio of the ionic radii ri(AnIV)/ri(MI). The AnM3 complexes are formed for ratios above 0.92 and the AnM2 type is formed for ratios below 0.87. All compounds are unambiguously characterized in both solution and solid states by NMR and IR spectroscopic studies and single crystal X-ray diffraction analyses, respectively.


Assuntos
Metais Alcalinos , Urânio , Metais Alcalinos/química , Sódio/química , Lítio/química , Cátions , Urânio/química
3.
Solid State Nucl Magn Reson ; 122: 101820, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36067621

RESUMO

New salts of teriflunomide TFM (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (TFM_Li), sodium (TFM_Na), potassium (TFM_K), rubidium (TFM_Rb), caesium (TFM_Cs) and ammonium (TFM_NH4) were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: TFM_Na (CCDC: 2173257), TFM_Cs (CCDC: 2165288) and TFM_NH4 (CCDC: 2165281) were determined and deposited. Compared to the native TFM, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N-H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for TFM_Na and TFM_Cs allowed to propose structural features of TFM_Li for which it was not possible to obtain adequate material for single crystal X-Ray measurement.


Assuntos
Sais , Sódio , Sais/química , Raios X , Pós , Espectroscopia de Ressonância Magnética/métodos , Sódio/química
4.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209022

RESUMO

Today, the use of natural biodegradable materials in the production processes is more and more adopted by industry to achieve cyclic economy targets and to improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, nanostructures were prepared by incorporation of thyme oil with natural natrium-montmorillonite and organo-montmorillonite with two different techniques, direct impregnation and the green evaporation-adsorption process. Such nanostructures were mixed with poly-L-lactic-acid for the first time via an extrusion molding process to develop a new packaging film. Comparisons of morphological, mechanical, and other basic properties for food packaging were carried out via XRD, FTIR, TG, SEM/EDS, oxygen and water vapor permeation, and antimicrobial and antioxidant activity for the first time. Results showed that poly-L-lactic-acid could be modified with clays and essential oils to produce improved active packaging films. The final product exhibits food odor prevention characteristics and shelf-life extension capabilities, and it could be used for active packaging. The films based on OrgMt clay seems to be more promising, while the thyme oil addition improves their behavior as active packaging. The PLLA/3%TO@OrgMt and PLLA/5%TO@OrgMt films were qualified between the tested samples as the most promising materials for this purpose.


Assuntos
Antioxidantes/química , Bentonita/química , Embalagem de Alimentos , Membranas Artificiais , Nanoestruturas/química , Óleos de Plantas/química , Poliésteres/química , Sódio/química , Timol/química , Thymus (Planta)/química , Anti-Infecciosos , Fenômenos Químicos , Fenômenos Mecânicos , Nanoestruturas/ultraestrutura , Análise Espectral
5.
PLoS One ; 17(2): e0263986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167606

RESUMO

Mineral soda alumina (m-Na-Al) glass is a common glass production group found around the Indo-Pacific region. In Iron Age Taiwan, its presence dates back to the early 1st millennium AD. This research discusses m-Na-Al glass beads excavated from Iron Age sites in Taiwan. No production sites for m-Na-Al have been found, but microstructural analysis suggests m-Na-Al glass appears to originate around South Asia and is exchanged widely. SEM-EDS and EPMA were used to analyse red, orange, yellow, green and blue m-Na-Al glass. The microstructure of the glass shows the presence of plagioclase and alkali feldspar relics in the glass, suggesting a low manufacturing temperature. Copper-based colourants are identified in red, orange, blue and green glass, while lead tin oxide is used in yellow and green glass. It appears that various types of copper-containing raw materials were procured by craftspeople, and a self-reduction process for producing red and orange glass is tentatively proposed. Additionally, the microstructure of yellow glass reveals different colouring paths were used. These results increase our understanding of the selection of raw materials, and provide an impetus for further research on the cross craft interaction between glass and copper production.


Assuntos
Óxido de Alumínio/química , Vidro/análise , Sódio/química , Arqueologia , Cor , Microesferas , Taiwan
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022230

RESUMO

Accurate knowledge of RNA hybridization is essential for understanding RNA structure and function. Here we mechanically unzip and rezip a 2-kbp RNA hairpin and derive the 10 nearest-neighbor base pair (NNBP) RNA free energies in sodium and magnesium with 0.1 kcal/mol precision using optical tweezers. Notably, force-distance curves (FDCs) exhibit strong irreversible effects with hysteresis and several intermediates, precluding the extraction of the NNBP energies with currently available methods. The combination of a suitable RNA synthesis with a tailored pulling protocol allowed us to obtain the fully reversible FDCs necessary to derive the NNBP energies. We demonstrate the equivalence of sodium and magnesium free-energy salt corrections at the level of individual NNBP. To characterize the irreversibility of the unzipping-rezipping process, we introduce a barrier energy landscape of the stem-loop structures forming along the complementary strands, which compete against the formation of the native hairpin. This landscape correlates with the hysteresis observed along the FDCs. RNA sequence analysis shows that base stacking and base pairing stabilize the stem-loops that kinetically trap the long-lived intermediates observed in the FDC. Stem-loops formation appears as a general mechanism to explain a wide range of behaviors observed in RNA folding.


Assuntos
Conformação de Ácido Nucleico , Dobramento de RNA , Fenômenos Biomecânicos , Magnésio/química , RNA/química , Sódio/química , Termodinâmica
7.
Pak J Biol Sci ; 24(8): 847-857, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486352

RESUMO

<b>Background and Objective:</b> Adequate yield improvement in groundnut may not be achieved in acid sand Ultisol through the application of mineral phosphorus alone, however, a combined application of lime and phosphorus fertilizer may be a better management option in such soils. Hence, this study evaluated the effects of four levels of lime (0, 2.0, 4.0 and 8.0 t ha<sup>1</sup>) and four phosphorus (P) levels (0, 25, 50 and 75 kg ha<sup>1</sup>) on the performance of groundnut (<i>Arachis hypogaea </i>L.) in the humid rainforest of South Eastern Nigeria. <b>Materials and Methods:</b> The study was a factorial experiment laid out in a Randomized Complete Block Design (RCBD) and consisted of sixteen treatment combinations replicated three times each. <b>Results:</b> The result obtained showed that the application of phosphorus fertilizer and lime had a significant (p<0.05) effect on plant height, number of leaves per plant, number of branches per plant, 75 kg ha<sup>1</sup> P and 8.0 t ha<sup>1</sup> lime resulted in the highest growth parameter. Similarly, 75 kg ha<sup>1</sup> P and 8.0 t ha<sup>1</sup> lime significantly improved the number of pods per plant 30.67, pod yield 3.58 t ha<sup>1</sup>, biomass yield of 4.68 t ha<sup>1</sup>, seed yield of 2.1 t ha<sup>1</sup> and 100 seed weight of 44.58 g, seed yield of groundnut while curtailing the number of unfilled pods 2.33. <b>Conclusion:</b> Application of phosphorus and lime at 75 kg ha<sup>1</sup> P and 8.0 t ha<sup>1</sup> lime is a beneficial agronomic practice that could enhance the productivity of groundnut in the Calabar rainforest zone of Cross River State.


Assuntos
Arachis/química , Compostos de Cálcio/química , Óxidos/química , Fósforo/química , Biomassa , Cálcio/química , Cátions , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Concentração de Íons de Hidrogênio , Magnésio/química , Nigéria , Folhas de Planta/crescimento & desenvolvimento , Potássio/química , Areia , Sódio/química , Solo
8.
PLoS One ; 16(8): e0255787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388208

RESUMO

Phytate is a dominant form of organic phosphorus (P) in the environment. Complexation and precipitation with polyvalent metal ions can stabilize phytate, thereby significantly hinder the hydrolysis by enzymes. Here, we studied the stability and hydrolyzability of environmentally relevant metal phytate complexes (Na, Ca, Mg, Cu, Zn, Al, Fe, Al/Fe, Mn, and Cd) under different pHs, presence of metal chelators, and thermal conditions. Our results show that the order of solubility of metal phytate complexes is as follows: i) for metal species: Na, Ca, Mg > Cu, Zn, Mn, Cd > Al, Fe, ii) under different pHs: pH 5.0 > pH 7.5), and iii) in the presence of chelators: EDTA> citric acid. Phytate-metal complexes are mostly resistant towards acid hydrolysis (except Al-phytate), and dry complexes are generally stable at high pressure and temperature under autoclave conditions (except Ca phytate). Inhibition of metal complex towards enzymatic hydrolysis by Aspergillus niger phytase was variable but found to be highest in Fe phytate complex. Strong chelating agents such as EDTA are insufficient for releasing metals from the complexes unless the reduction of metals (such as Fe) occurs first. The insights gained from this research are expected to contribute to the current understanding of the fate of phytate in the presence of various metals that are commonly present in agricultural soils.


Assuntos
Complexos de Coordenação/química , Metais/química , Ácido Fítico/química , Alumínio/química , Cádmio/química , Cobre/química , Íons/química , Ferro/química , Magnésio/química , Manganês/química , Fósforo/química , Potássio/química , Sódio/química , Zinco/química
9.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806825

RESUMO

Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.


Assuntos
Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Compostos de Selênio/síntese química , Compostos de Selênio/química , Selenoproteínas/genética , Sódio/química , Selenito de Sódio/química
10.
J Mater Sci Mater Med ; 32(4): 30, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725215

RESUMO

Release kinetics for sodium, silicon, aluminium, calcium and phosphorus from conventional glass-ionomer dental cement has been studied in neutral and acid conditions. Specimens (6 mm height × 4 mm diameter) were made from AquaCem (Dentsply, Konstanz, Germany), 6 per experiment. They were matured (37 °C, 1 h), then placed in 5 cm3 storage solution at 20-22 °C. In the first experiment, deionised water, changed daily for 28 days, was used. In the second, deionised water, changed monthly for 21 months, was used. In the third, lactic acid (20 mmol dm-3, pH: 2.7 ± 0.1), changed monthly for 21 months was used. After storage each solution was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed that in neutral conditions, no calcium was released, but in acid, significant amounts were released. The other elements (Na, Al, Si and P) were released in neutral as well as acid conditions, with greater amounts in acid. More frequent changes of water gave greater release. In neutral conditions, release over 21 months followed the equation: [E]c = [E]1t/(t + t½) + ß√t ([E]c is the cumulative release of the element). In acid conditions, this became: [E]c = [E]1t/(t + t½) + αt. Hence release of all elements was shown to occur in two steps, a rapid initial one (half-life: 12-18 h) and a longer second one. In neutral conditions, the longer step involves diffusion; in acid it involves erosion. These patterns influence the material's bioactivity.


Assuntos
Resinas Acrílicas/química , Fluoretos/química , Cimentos de Ionômeros de Vidro/química , Alumínio/química , Cálcio/química , Difusão , Concentração de Íons de Hidrogênio , Cinética , Ácido Láctico/química , Limite de Detecção , Teste de Materiais , Fósforo/química , Silício/química , Sódio/química , Água/química
11.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712469

RESUMO

The functional mechanism of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13-cis retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond. The retinal converts back into an all-trans conformation in the O-intermediate, which is the key state for sodium transport. However, retinal carbon and Schiff base nitrogen chemical shifts differ from those observed in the KR2 dark state all-trans conformation, indicating a perturbation through the nearby bound sodium ion. Our findings are supplemented by optical and infrared spectroscopy and are discussed in the context of known three-dimensional structures.


Assuntos
Rodopsina , ATPase Trocadora de Sódio-Potássio , Carbono/metabolismo , Flavobacteriaceae , Íons/metabolismo , Espectroscopia de Ressonância Magnética , Rodopsina/química , Sódio/química , ATPase Trocadora de Sódio-Potássio/química
12.
Int J Biol Macromol ; 174: 485-493, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33548307

RESUMO

Three phenolic acids including p-hydroxybenzoic acid (PHBA), 3,4-dihydroxybenzoic acid, (DHBA), and gallic acid (GA) were grafted onto native pectin (Na-Pe) through enzymatic method. Ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and 1H NMR analyses were used to explore the reaction mechanism. Results indicated that the p-hydroxyl of the phenolic acids reacted with the methoxycarbonyl of pectin through transesterification, and a covalent connection was formed. The phenolic acid contents of PHBA modified pectin (Ph-Pe), DHBA modified pectin (Dh-Pe), and GA modified pectin (Ga-Pe) were 20.18%, 18.87%, and 20.32%, respectively. After acylation with phenolic acids, the 1,1-diphenyl-2-picryl hydrazine clearance of pectin changed from 7.68% (Na-Pe) to 6.88% (Ph-Pe), 40.80% (Dh-Pe), and 90.30% (Ga-Pe), whereas its inhibition ratio of pectin increased from 3.11% (Na-Pe) to 35.02% (Ph-Pe), 66.36% (Dh-Pe), and 77.89% (Ga-Pe). Moreover, compared with Na-Pe, modified pectins exhibited better emulsification properties and stronger antibacterial activities against both Escherichia coli and Staphylococcus aureus.


Assuntos
Ácido Gálico/química , Hidroxibenzoatos/química , Parabenos/química , Pectinas/farmacologia , Acilação , Antibacterianos/química , Antibacterianos/farmacologia , Emulsificantes/química , Emulsificantes/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Esterificação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pectinas/química , Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
Pediatr Res ; 89(5): 1253-1260, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663837

RESUMO

BACKGROUND: Antenatal glucocorticoids (GCs) reduce respiratory distress syndrome (RDS) in preterm infants and are associated with reduced lung liquid content. Our aim was to assess whether airway gene expression of mediators of pulmonary epithelial sodium and liquid absorption, and further, respiratory morbidity, associate with cord blood GC concentrations. METHODS: The study included 64 infants delivered <32 weeks gestation. Cortisol and betamethasone in umbilical cord blood were quantified with liquid chromatography-tandem mass spectrometry. The total GC concentration was calculated. Gene expression of the epithelial sodium channel (ENaC), Na,K-ATPase, and serum- and GC-inducible kinase 1 at <2 h and at 1 day postnatally in nasal epithelial cell samples was quantified with reverse transcription-polymerase chain reaction. The mean oxygen supplementation during the first 72 h was calculated. RESULTS: Concentrations of cord blood betamethasone and total GC were significantly lower in infants with RDS and correlated with mean oxygen supplementation. Expression of αENaC and α1- and ß1Na,K-ATPase at <2 h correlated with betamethasone and total GC concentrations. Expression of Na,K-ATPase was lower in infants with RDS. CONCLUSION: Enhancement of lung liquid absorption via increased expression of sodium transporters may contribute to the beneficial pulmonary effects of antenatal GCs. IMPACT: RDS is related to lower umbilical cord blood GC concentrations and lower airway expression of sodium transporters. In addition to the timing of antenatal GC treatment, resulting concentrations may be of importance in preventing RDS. Induction of sodium transport may be a factor contributing to the pulmonary response to antenatal GCs.


Assuntos
Betametasona/química , Glucocorticoides/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Sódio/química , Transporte Biológico , Estudos Transversais , Canais Epiteliais de Sódio/genética , Feminino , Sangue Fetal/metabolismo , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Prospectivos , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Org Lett ; 22(16): 6339-6343, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806193

RESUMO

Hypulatones A and B (1 and 2), two racemic meroterpenoids possessing an unprecedented spiro[benzofuran-2,1'-cycloundecan]-4'-ene-4,6(5H)-dione core, were characterized from Hypericum patulum. Compound 2 was found to significantly inhibit the late current of Nav1.5 (late INa, IC50 = 0.2 µM). Importantly, 2 exhibited remarkable separation (>100-fold) of late INa relative to peak INa and notable selectivity over Cav3.1, Kv1.5, and hERG. 1 showed comparable inhibition on late INa compared to that of 2 with poorer selectivity.


Assuntos
Hypericum/química , Miócitos Cardíacos/fisiologia , Sódio/química , Humanos , Estrutura Molecular , Miócitos Cardíacos/química
15.
J Fluoresc ; 30(5): 1121-1129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32648172

RESUMO

Specific monovalent cation effects on the domain-domain interaction of heterogeneous dimeric protein were investigated using green fluorescent protein (GFP)-glutathione-s-transferase (GST) fusion protein as a model protein. Conjugating N-terminal of GST domain with a fluorescence probe Cyanine3, complementary increase and decrease of fluorescence intensities of Cyanine3 and GFP were recognized on the exclusive excitation of GFP and further the fluorescence decay of GFP was remarkably accelerated to show that an excellent Förster type of resonance excitation energy transfer (FRET) pair was constructed between GFP- and GST-domain. The spectral overlap integral and critical distance of the FRET pair were estimated to be 5.96×1013 M-1cm3 and 62.5 Å, respectively. The FRET rate and efficiency evaluated by fluorescence lifetime of the energy donor, GFP, were influenced by the monovalent cations included in the buffer solution to suggest that the domain-domain interactions of GFP-GST fusion protein would be susceptible to cation species and their concentrations. The order affecting the domain-domain interaction was estimated to be Li+>NH4+ >Na+>K+>Cs+, almost corresponding to the reverse Hofmeister series.


Assuntos
Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Glutationa Transferase/química , Proteínas de Fluorescência Verde/química , Cloreto de Amônio/química , Cátions/química , Césio/química , Glutationa Transferase/metabolismo , Lítio/química , Potássio/química , Multimerização Proteica , Sódio/química
16.
Food Chem ; 333: 127493, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659659

RESUMO

The effects of the addition of salt ions and molecular weights (Mw) of CH on Mesona chinensis polysaccharide (MCP)-chitosan (CH) hydrogel were investigated. Result indicated both low concentration of monovalent salt ions (Na+ and K+), divalent cations (Ca2+) and oxoanions (SO42-) could promote the gel properties of MCP-CH hydrogel. The Mw of CH has huge impact on the formation and properties of hydrogel. Combining the relationship between rheology and structural, monovalent salt ions such as Na+ and K+ affect gel formation and its properties by influencing electrostatic interaction and chain conformation. Both divalent cations (Ca2+) and oxoanions (SO42-) facilitated the formation of gel networks via electrostatic interaction, coordination bonds and hydrogen bonds. Moreover, Mw of CH influenced formation and texture of MCP-CH hydrogel via affecting the conformation of CH molecular chain. These findings will provide a few theoretical bases to understand the formation mechanism of MCP-CH hydrogel.


Assuntos
Quitosana/química , Hidrogéis/química , Lamiaceae/química , Extratos Vegetais/química , Polieletrólitos/química , Sais/química , Ânions/química , Cálcio/química , Hidrogéis/síntese química , Peso Molecular , Polissacarídeos/química , Potássio/química , Reologia , Sódio/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-32712085

RESUMO

The aim of this study was to identify the unknown transport mechanism of the extensively used monocarboxylate methionine feed supplement DL-methionine hydroxy analogue (DL-MHA) in rainbow trout intestine. Transport across the pyloric caeca (PC), midgut (MG), and hindgut (HG) regions were kinetically studied in Na+- and H+-dependent manners. Gene expression of monocarboxylate (MCTs) and sodium monocarboxylate transporters (SMCTs) were assessed. Results demonstrated that DL-MHA transport from 0.2-20 mM was Na+-dependent and obeyed Michaelis-Menten kinetics with low affinity in PC & MG in apical/basal pH of 7.7/7.7. Changes in apical/basal pH (6.0/6.0, 6.0/7.7, and 7.7/8.7) had insignificant effects on kinetics. In contrast, HG flux kinetics were only obtained in pH 7.7/8.7 or in the presence of lactate with medium affinity. Additionally, DL-MHA transport from 0-150 µM demonstrated the presence of a Na+-dependent high-affinity transporter in PC & MG. Conclusively, two distinct carrier-mediated DL-MHA transport mechanisms along the trout gut were found: 1) in PC & MG: apical transport was regulated by Na+-requiring systems that possibly contained low- and high-affinity transporters, and basolateral transport was primarily achieved through a H+-independent transporter; 2) in HG: uptake was apically mediated by a Na+-dependent transporter with medium affinity, and basolateral exit was largely controlled by an H+-dependent transporter. Finally, two major methionine feed supplements, DL-MHA and DL-methionine (DL-Met) were compared to understand the differences in their bioefficacy. Flux rates of DL-MHA were only about 42.2-66.0% in PC and MG compared to DL-Met, suggesting intestinal transport of DL-MHA was lower than DL-Met.


Assuntos
Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Metionina/análogos & derivados , Metionina/farmacologia , Oncorhynchus mykiss/fisiologia , Ração Animal/análise , Animais , Transporte Biológico , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Cinética , Metionina/química , Transportadores de Ácidos Monocarboxílicos , Prótons , Sódio/química , Sódio/metabolismo
18.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575547

RESUMO

This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 °C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64-62.54 m²/g; 9 nm) than the sodium formulation (6.34-32.62 m²/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70-75 °C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 °C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions.


Assuntos
Biocombustíveis , Temperatura Alta , Potássio/química , Sódio/química , Óleo de Soja/química , Catálise , Esterificação
19.
Dalton Trans ; 49(27): 9239-9253, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32510542

RESUMO

Oxide based highly efficient narrow band red emitting phosphors are still a bottleneck in white LED applications. Trivalent europium ion based phosphors could be a better choice, however their weak oscillator strength restricts their use in white light emitting diodes (LEDs). Herein, we report a novel red emitting NaSrEu(MoO4)3 (NSEuM) phosphor with zero concentration quenching (non-layered crystal structure). The phosphors (NaSrY1-xEux(MoO4)3, x = 0.1-1, in increments of 0.1) were synthesized through a traditional solid-state reaction and their phase formations were analyzed by powder X-ray diffraction (PXRD) followed by Rietveld refinement. Under 395 nm excitation, all the phosphors showed sharp emission at 616 nm (full width at half maximum, FWHM ∼4-5 nm) owing to the 5D0→7F2 electric dipole transition of the Eu3+ ion. A concentration dependent photoluminescence (PL) study revealed that there is no concentration quenching of the systems, leading to them having superior emission characteristics over those of commercial red phosphors as well as a reported Eu3+ phosphor with a layered structure. The color purity of the synthesized phosphor was observed to be 96.32% and it shows excellent thermal stability at 423 K, retaining 64.6% of the emission intensity of its initial room temperature. The NSEuM phosphor shows a high absolute quantum yield of 79.7%. Besides this, a red LED (near UV (NUV) LED chip with the NaSrEu(MoO4)3 phosphor) as well as a hybrid white LED (NUV LED chip with an organic yellow dye + red NSEuM phosphor) were fabricated and their optical properties were studied. After the inclusion of the red phosphor in the hybrid white LED, the color rendering index (CRI)/correlated color temperature (CCT) were improved significantly (60/9333 K vs. 79/6004 K, respectively). In addition, to show the potential use of the system in plant growth application, we systematically investigated the Sm3+ activation in NaSrY(MoO4)3 and found that the phosphor shows orange red emission with an intense deep red emission (645 nm (4G5/2→6H9/2)). We fabricated a hybrid red/deep red LED by integrating a NUV LED with a mixed Sm3+ and Eu3+ phosphor and the spectral lines were well matched with the phytochrome (Pr) absorption spectrum. The presently investigated phosphor showed potential in a white LED as well as a deep red/orange-red LED for plant growth.


Assuntos
Európio/química , Luz , Substâncias Luminescentes/química , Fósforo/química , Molibdênio/química , Oxigênio/química , Desenvolvimento Vegetal , Samário/química , Sódio/química , Estrôncio/química , Ítrio/química
20.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486459

RESUMO

Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid-base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl- content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl- uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl- balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid-base balance, providing new insights into its function.


Assuntos
Equilíbrio Ácido-Base , Arginina Vasopressina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Íons/química , Simportadores de Cloreto de Sódio/metabolismo , Vasopressinas/metabolismo , Animais , Cálcio/química , Cloretos/química , DNA Complementar/metabolismo , Regulação para Baixo , Eletrodos , Homeostase , Hibridização In Situ , Transporte de Íons , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo , Pele/metabolismo , Sódio/química , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA