Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.895
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Vet Med Sci ; 10(3): e1445, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38652025

RESUMO

BACKGROUND: This study aimed to evaluate the antimicrobial effects of zahter extract, zahter essential oil, laurel extract, and laurel essential oil on Salmonella Typhimurium inoculated on chicken wings. METHODS: A total of 10 groups, including eight study groups and two control groups were formed, consisting of zahter extract and zahter essential oil and laurel extract and laurel essential oil in different proportions. In the study, laurel extract at 6.4% and 12.8% concentrations, laurel essential oil at 0.2% and 0.4% concentrations, zahter extract at 0.2% and 0.4% concentrations, and zahter essential oil at 0.2% and 0.4% concentrations were used. RESULTS: The broth microdilution method was used to evaluate the antimicrobial activity of the extract and essential oils on the S. Typhimurium. Minimum inhibitory concentrations of the extracts and essential oils used in the study against S. Typhimurium were determined. The highest inhibitory effect on S. Typhimurium was observed in the 0.4% laurel essential oil group. It was determined that the inhibitory effect increased as the concentration of laurel essential oil increased. In addition, the antimicrobial activity of zahter essential oil is less inhibitory than the laurel extract, laurel essential oil, and zahter extract. CONCLUSION: According to the results of this study, it has been revealed that extracts and essential oils obtained from zahter and laurel plants, which have been shown to be natural antimicrobial, can be used in foods as an alternative to chemical additives. To develop research results, the applicability of these extracts and essential oils in different foodstuffs should be examined using different ingredients and concentrations.


Assuntos
Galinhas , Óleos Voláteis , Extratos Vegetais , Salmonella typhimurium , Asas de Animais , Animais , Salmonella typhimurium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asas de Animais/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Laurus/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Anti-Infecciosos/farmacologia
2.
Poult Sci ; 103(5): 103541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471228

RESUMO

The objective of this study was to investigate the protective effects and mechanisms of dietary administration of sodium humate (HNa) and its zinc and selenium chelate (Zn/Se-HNa) in mitigating Salmonella Typhimurium (S. Typhi) induced intestinal injury in broiler chickens. Following the gavage of 109 CFU S. Typhi to 240 broilers from 21-d to 23-d aged, various growth performance parameters such as body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed ratio (FCR) were measured before and after infection. Intestinal morphology was assessed to determine the villus height, crypt depth, and chorionic cryptologic ratio. To evaluate intestinal barrier integrity, levels of serum diamine oxidase (DAO), D-lactic acid, tight junction proteins, and the related genes were measured in each group of broilers. An analysis was conducted on inflammatory-related cytokines, oxidase activity, and Nuclear Factor Kappa B (NF-κB) and Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related proteins and mRNA expression. The results revealed a significant decrease in BW, ADG, and FCR in S. typhi-infected broilers. HNa tended to increase FCR (P = 0.056) while the supplementation of Zn/Se-HNa significantly restored BW and ADG (P < 0.05). HNa and Zn/Se-HNa exhibit favorable and comparable effects in enhancing the levels of serum DAO, D-lactate, and mRNA and protein expression of jejunum and ileal tight junction. In comparison to HNa, Zn/Se-HNa demonstrates a greater reduction in S. Typhi shedding in feces, as well as superior efficacy in enhancing the intestinal morphology, increasing serum catalase (CAT) activity, inhibiting pro-inflammatory cytokines, and suppressing the activation of the NF-κB pathway. Collectively, Zn/Se-HNa was a more effective treatment than HNa to alleviate adverse impact of S. Typhi infection in broiler chickens.


Assuntos
Suplementos Nutricionais , Substâncias Húmicas , Doenças das Aves Domésticas , Salmonelose Animal , Compostos de Selênio , Compostos de Zinco , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Compostos de Zinco/farmacologia , Compostos de Zinco/uso terapêutico , Galinhas/microbiologia , Salmonella typhimurium , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Crescimento/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Gastroenterite/tratamento farmacológico , Fezes/microbiologia , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Food Microbiol ; 120: 104462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431310

RESUMO

The antimicrobial effect of fresh garlic (20, 30, and 50 g/kg) and the equivalent concentrations of garlic oil (80, 120, and 200 mg/kg) was investigated in ground mutton during storage at 4 °C. By day 6 and thereafter, mutton meatballs treated with 50 g/kg of fresh garlic and 200 mg/kg garlic oil exhibited a significant decline in psychrotrophic and Pseudomonas counts in comparison with control. Fresh garlic added at a concentration of 50 g/kg exhibited the highest antimicrobial effect, followed by garlic oil at 200 mg/kg, fresh garlic at 30 g/kg, and garlic oil at 120 mg/kg. By the 15th day of storage, the fresh garlic added at concentrations of 50 and 30 g/kg and garlic oil added at concentrations of 120, and 200 mg/kg inactivated the populations of foodborne pathogens artificially inoculated into ground mutton and exhibited significant (P < 0.01) lower counts in Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus by more than 3 logs CFU/g, in comparison to control. Therefore, fresh garlic and garlic oil can be used as natural antimicrobial food additives to extend the shelf life and inactivate the populations of foodborne pathogens in meat products.


Assuntos
Compostos Alílicos , Alho , Listeria monocytogenes , Sulfetos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Salmonella typhimurium
4.
Med Arch ; 78(1): 9-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481590

RESUMO

Background: Typhoid fever is an acute disease caused by Salmonella typhimurium that can invade the liver and cause symptoms of hepatomegaly,jaundice.Biochemically, these symptoms can be assessed by seeing the SGPT and SGOT levels increase. Pirdot Leaf is an herbal plant found in the Toba area of North Sumatra which has a lot of bioactive potential,namely flavonoids,steroids, saponins. Flavonoids are active substances that can overcome the inflammatory process, it is expected that the administration of Pirdot leaf extract can reduce levels of SGOT and SGPT in mice induced Salmonella Typhimurium. Objective: The purpose of this study was to determine the effect of ethanol extract of pirdot leaves on SGPT and SGOT values in rat models induced by Salmonella typhimurium. Methods: This study used 32 samples divided into four groups namely: Normal group, Negative group, Positive group and Treatment group. Results: The results were obtained for normal control SGPT (27,85) negative control (37,80) positive control (27,30) and for Dick treatment (26,21). The results of the study for SGPT obtained normal control (73,18), negative control (120,23), positive control (92,89), and treatment control (78,68). Conclusion: Giving ethanol extract of pirdot leaves effect on reducing SGPT and SGOT levels in wistar strain mice induced Salmonella typhimurium.


Assuntos
Extratos Vegetais , Salmonella typhimurium , Ratos , Camundongos , Animais , Ratos Wistar , Alanina Transaminase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol , Aspartato Aminotransferases , Flavonoides/farmacologia
5.
Int J Food Microbiol ; 413: 110611, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308880

RESUMO

In the present study, the synergistic bactericidal effect and mechanism of ultrasound (US) combined with Lauroyl Arginate Ethyl (LAE) against Salmonella Typhimurium were investigated. On this basis, the effect of US+LAE treatment on the washing of S. Typhimurium on the surface of onions and on the physical and chemical properties of onion during fresh-cutting and storage were studied. The results showed that treatment with US+LAE could significantly (P < 0.05) reduce the number of S. Typhimurium compared to US and LAE treatments alone, especially the treatment of US+LAE (230 W/cm2, 8 min, 71 µM) reduced S. Typhimurium by 8.82 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release and N-phenyl-l-naphthylamine (NPN) assays demonstrated that US+LAE disrupted the integrity and permeability of S. Typhimurium cell membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+LAE exacerbated oxidative stress and lipid peroxidation in cell membranes. Field emission scanning electron microscopy (FESEM) demonstrated that US+LAE treatment caused loss of cellular contents and led to cell crumpling and even lost the original cell morphology. US+LAE treatment caused a significant (P < 0.05) decrease in the number of S. Typhimurium on onions, but there was no significant (P > 0.05) effect on the color, hardness, weight and ascorbic acid content of onions. This study elucidated the synergistic antibacterial mechanism of US+LAE and verified the feasibility of bactericidal effect on the surface of onions, providing a theoretical basis for improving the safety of fresh produce in the food industry and to propose a new way to achieve the desired results.


Assuntos
Cebolas , Salmonella typhimurium , Antibacterianos/farmacologia , Preservação Biológica , Microscopia Eletrônica de Varredura , Arginina/farmacologia
6.
Sci Rep ; 14(1): 898, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195662

RESUMO

As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Lactuca , Salmonella typhimurium , Produtos Agrícolas
7.
J Toxicol Environ Health A ; 87(5): 185-198, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38073488

RESUMO

Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.


Assuntos
Antimutagênicos , Salmonella enterica , Humanos , Salmonella typhimurium/genética , Salmonella enterica/genética , Taninos Hidrolisáveis/farmacologia , Sorogrupo , Testes de Mutagenicidade , Mutagênicos/toxicidade , Antimutagênicos/farmacologia , Extratos Vegetais/farmacologia , Carcinógenos/farmacologia , DNA/farmacologia , Linfócitos
8.
Chem Biodivers ; 21(2): e202301575, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116885

RESUMO

Bioactive compounds derived from medicinal plants have acquired immense attentiveness in drug discovery and development. The present study investigated in vitro and predicted in silico the antibacterial, antifungal, and antiviral properties of thymol and carvacrol, and assessed their safety. The performed microbiological assays against Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica Typhimurium revealed that the minimal inhibitory concentration values ranged from (0.078 to 0.312 mg/mL) and the minimal fungicidal concentration against Candida albicans was 0.625 mg/mL. Molecular docking simulations, stipulated that these compounds could inhibit bacterial replication and transcription functions by targeting DNA and RNA polymerases receptors with docking scores varying between (-5.1 to -6.9 kcal/mol). Studied hydroxylated monoterpenes could hinder C. albicans growth by impeding lanosterol 14α-demethylase enzyme and showed a (ΔG=-6.2 and -6.3 kcal/mol). Computational studies revealed that thymol and carvacrol could target the SARS-Cov-2 spike protein of the Omicron variant RBD domain. Molecular dynamics simulations disclosed that these compounds have a stable dynamic behavior over 100 ns as compared to remdesivir. Chemo-computational toxicity prediction using Protox II webserver indicated that thymol and carvacrol could be safely and effectively used as drug candidates to tackle bacterial, fungal, and viral infections as compared to chemical medication.


Assuntos
Cimenos , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus , Timol , Humanos , Timol/farmacologia , Timol/metabolismo , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Salmonella typhimurium , Candida albicans , Escherichia coli
9.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974046

RESUMO

AIMS: The objectives of this study were to evaluate the effect of combination treatment with cold plasma (CP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on buckwheat seeds, and determined the germination rates of seeds and the quality of sprouts following combination treatment. METHODS AND RESULTS: Buckwheat seeds inoculated with Salmonella Typhimurium and Listeria monocytogenes were treated with CP, HW, CP + HW, VP + HW, or CP + VP + HW. The germination rates of the HW-, CP + HW-, VP + HW-, and CP + VP + HW-treated seeds and the antioxidant activities and rutin contents of the CP + HW- and CP + VP + HW-treated sprouts were determined. HW, CP + HW, and CP + VP + HW were found to reduce the levels of the two pathogens to below the detection limit (1.0 log CFU g-1) at 70°C. However, HW and CP + HW significantly reduced the germination rate of buckwheat seeds. CP + VP + HW did not affect the germination rate of seeds nor the antioxidant activities and rutin content of buckwheat sprouts. CONCLUSIONS: These results indicate that CP + VP + HW can be used as a novel control method to reduce foodborne pathogens in seeds without causing quality deterioration.


Assuntos
Fagopyrum , Listeria monocytogenes , Salmonella typhimurium , Vácuo , Antioxidantes , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Água , Sementes , Rutina/farmacologia , Germinação
10.
Food Chem Toxicol ; 182: 114100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838214

RESUMO

The role of dietary pectin on microbial-induced colitis, oxidative status, barrier function, and microbial composition, as well as the underlying mechanisms, is scarce. In this study, we aimed to investigate whether dietary pectin alleviates Salmonella typhimurium-induced colitis in mice. Male C57BL/6J mice fed an isocaloric and isofibrous diet with 7% pectin or cellulose were administered sterile water or Salmonella typhimurium to induce colitis, which is equal to a human food dose of 0.57% (5.68 g/kg). Dietary pectin alleviated Salmonella typhimurium-induced colitis and oxidative stress as shown by the reduced disease activity index score, decreased colon shortening and histological damage score, colonic hydrogen peroxide, malondialdehyde concentrations, and relative mRNA expressions of coenzyme Q-binding protein COQ10 homologue B (Coq10b), Ccl-2, Ccl-3, Ccl-8, Tnf-α, Il-1ß, Ifn-γ, Ifn-ß, and serum TNF-α protein level. Moreover, pectin administration ameliorated the downregulated colonic abundances of occludin, zonula occludens-1, zonula occludens-2, and the upregulated abundances of TLR2 and p-NF-κB in Salmonella-infected mice. Additionally, 16S rRNA analysis demonstrated that pectin altered the microbial beta-diversity and reduced Salmonella levels. Collectively, pectin ameliorated Salmonella typhimurium-induced colitis, oxidative stress, and tight junction, which may be related to the inactivation of TLR2-NF-κB signalling and reduced abundance of Salmonella.


Assuntos
Colite , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Salmonella typhimurium/genética , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Pectinas/farmacologia , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Dieta , Sulfato de Dextrana , Modelos Animais de Doenças
11.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762521

RESUMO

Salmonella Typhimurium is a common foodborne pathogen in meat and meat products, causing significant harm and losses to producers and consumers. The aim of this study was to investigate the antibacterial activity and possible mechanisms of beetroot (Beta vulgaris) extract against S. Typhimurium, as well as the application potential in cooked pork. The results suggested beetroot extract could inhibit S. Typhimurium with a minimum inhibitory concentration (MIC) of 20 mg/mL. After treatment with beetroot extract (1 or 2 MIC), S. Typhimurium exhibited the characteristics of apoptotic-like death (ALD), such as membrane depolarization, phosphatidylserine (PS) externalization, caspase-like protein activation, and DNA fragmentation. Further research has shown that the ALD induced by beetroot extract in S. Typhimurium was caused by reactive oxygen species (ROS) consumption, which was different from most natural products. The treatment of cooked pork with beetroot extract could reduce the number of S. Typhimurium, lower pH, defer lipid oxidation, and improve the colour. These results indicate that beetroot extract can inhibit S. Typhimurium through the ALD mechanism and has potential as an antibacterial agent against S. Typhimurium in ready-to-eat meat products.


Assuntos
Beta vulgaris , Carne de Porco , Carne Vermelha , Suínos , Animais , Salmonella typhimurium , Apoptose , Antibacterianos/farmacologia , Verduras , Extratos Vegetais/farmacologia
12.
Anal Chim Acta ; 1276: 341618, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573108

RESUMO

Due to their superparamagnetism and enzyme-like activity, iron oxide (Fe3O4) nanozymes can be readily used for sample pretreatment and the generation of detection signals, and have, thus, attracted much attention in the field of bioanalysis and diagnosis. However, the low catalytic activity of Fe3O4 nanozymes does reduce the sensitivity of Fe3O4-based methods, limiting their application. In this study, Fe3O4@Cu@poly(pyrrole-2-carboxylic acid) yolk-shell nanozymes (Fe3O4@Cu@PCPy YSNs) were synthesized using a facile approach and selective chemical etching technology. Compared with Fe3O4 nanozymes, the Fe3O4@Cu@PCPy YSNs demonstrated a three-fold increase in the peroxidase-like activity, good dispersity and strong superparamagnetism. In addition, the flower-shaped structure of aptamer-complementary strand (Apt-CS) conjugates was designed on the surface of the Fe3O4@Cu@PCPy YSNs, which effectively inhibited their peroxidase-like activity by creating a physical barrier that hindered the access of substrates to the center of the Fe3O4@Cu@PCPy YSNs. Based on this principle, a robust and facile colorimetric aptasensor was developed for detecting Salmonella Typhimurium. The flower-shaped Apt-CS were dissociated in the presence of S. Typhimurium, promoting the recovery of Fe3O4@Cu@PCPy YSN catalytic activity. Under optimized conditions, this proposed aptasensor successfully detected S. Typhimurium in a linear range of 3 to 3 × 106 CFU/mL, achieving a detection limit of 1 CFU/mL. Finally, the feasibility of this novel aptasensor was further validated by three actual samples, with recoveries of between 84.3% and 102%, thereby demonstrating the huge potential of the proposed aptasensor for detecting S. Typhimurium in foods.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Salmonella typhimurium , Colorimetria , Aptâmeros de Nucleotídeos/química , Peroxidases , Limite de Detecção , Técnicas Biossensoriais/métodos
13.
Food Funct ; 14(15): 6896-6913, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37427574

RESUMO

Clinical antibiotics used worldwide could diminish the intestinal barrier, enhance contact with microbiota and intestinal immune cells, and induce inflammation. We found that ciprofloxacin treatment of Salmonella enterica serovar Typhimurium infection resulted in the destruction of the intestinal barrier, with decreased concentrations of MUC2, ZO-1, and occludin in the jejunum and colon. Ganoderma lucidum ethanol extracts (GLE), as a prebiotic food extract, significantly decreased inflammation-related enzymes, including COX-2, MPO, and iNOS, and pro-inflammatory cytokines (IL-6, IL-1ß, IL-17, and TNF-α), and protected the intestinal barrier by increasing the concentration of MUC2, ZO-1, and occludin. Meanwhile it significantly increased the abundances of Salmonella, Parabacteroides, Acinetobacter, Enterococcus, and Escherichia-Shigella, which increased the risk of pathogenic bacterial infections. Prebiotic G. lucidum polysaccharide (GLP) provided a significant intestinal barrier, improving the concentration of ZO-1, occludin, and MUC2 in the colon and jejunum. The synergistic effects of GLP and ciprofloxacin were hypothesized to reverse the negative effects resulting from ciprofloxacin alone, as the concentrations of ZO-1, occludin, and MUC2 were significantly increased in the jejunum and colon, especially in the colon. Also, the synergistic effect increased the abundances of probiotic bacteria Lachnospiraceae NK4A136, Ruminococcaceae UGG-014, Lactobacillus, and Parabacteroides. In conclusion, combined GLP and ciprofloxacin therapy against Salmonella infection alleviated the side effects resulting from the clinical application of the antibiotic alone, and increased the probiotic bacterial population.


Assuntos
Microbioma Gastrointestinal , Reishi , Infecções por Salmonella , Humanos , Ciprofloxacina/farmacologia , Ocludina/genética , Salmonella typhimurium/fisiologia , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Prebióticos , Bactérias/genética
14.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358428

RESUMO

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Assuntos
Agmatina , Colistina , Colistina/farmacologia , Salmonella typhimurium/genética , Transcriptoma , Agmatina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
15.
Eur Rev Med Pharmacol Sci ; 27(8): 3631-3644, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140314

RESUMO

OBJECTIVE: It is highly required to find novel alternatives to the antibiotics currently used due to the increasing dissemination of antibiotic resistance among bacteria, especially enteric bacteria. The current study aimed to produce selenium nanoparticles (SeNPs) by Euphorbia milii Des Moul leaves extract (EME). MATERIALS AND METHODS: The produced SeNPs were characterized using different techniques. After that, in vitro and in vivo antibacterial activity against Salmonella typhimurium was elucidated. Moreover, phytochemical identification and quantification of the chemical compositions of EME were performed using HPLC. The broth microdilution method determined the minimum inhibitory concentrations (MICs). RESULTS: The MIC values of SeNPs ranged from 128 to 512 µg/mL. Additionally, the impact of SeNPs on membrane integrity and permeability was investigated. A marked decline in the membrane integrity and inner and outer membrane permeability was noticed in 50%, 46.15%, and 50% of the tested bacteria, respectively. Subsequently, a gastrointestinal tract infection model was used to study the in vivo antibacterial potential of SeNPs. Remarkably, treatment with SeNPs resulted in average-sized intestinal villi and colonic mucosa in the small intestine and caecum, respectively. In addition, it was revealed there was no inflammation or dysplasia in the studied tissues. SeNPs also enhanced the survival rate and significantly decreased the number of colony-forming units per gram tissues in the small intestine and caecum. Concerning the inflammatory markers, SeNPs significantly (p < 0.05) decreased interleukins (6 and 1ß). CONCLUSIONS: The biosynthesized SeNPs revealed antibacterial potential in vivo and in vitro; however, this finding should be elucidated clinically in the future.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Salmonella typhimurium , Nanopartículas/química , Antibacterianos/farmacologia , Bactérias
16.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37141101

RESUMO

Highly intensified rearing conditions and precarious sanitary management predispose pigs to immune system activation, altered amino acid (AA) metabolism, and decreased growth performance. Thus, the main objective of this study was to evaluate the effects of increased dietary tryptophan (Trp), threonine (Thr), and methionine + cysteine (Met + Cys) supplementation on performance, body composition, metabolism, and immune responses of group-housed growing pigs under challenging sanitary conditions. A hundred and twenty pigs (25.4 ± 3.7 kg) were randomly assigned to a 2 × 2 factorial arrangement, consisting of two sanitary conditions (SC, good [GOOD] or salmonella-challenge and poor housing condition [Salmonella Typhimurium (ST) + POOR]) and two diets, control (CN) or supplemented with AA (Trp, Thr, and Met + Cys:Lys ratios 20% higher than those of the CN diet [AA>+]). Pigs were followed during the growing phase (25-50 kg) and the trial lasted 28 d. The ST + POOR SC pigs were challenged with Salmonella Typhimurium and raised in a poor housing condition. The ST + POOR SC increased rectal temperature, fecal score, serum haptoglobin, and urea concentration (P < 0.05) and decreased serum albumin concentration (P < 0.05) compared with GOOD SC. Body weight, average daily feed intake, average daily gain (ADG), feed efficiency (G:F), and protein deposition (PD) were greater in GOOD SC than in ST + POOR SC (P < 0.01). However, pigs housed in ST + POOR SC fed with AA+ diet had lower body temperature (P < 0.05), increased ADG (P < 0.05) and nitrogen efficiency (P < 0.05), and a tendency for improved PD and G:F (P < 0.10) compared with CN diet fed pigs. Regardless of the SC, pigs fed AA+ diet had lower serum albumin (P < 0.05) and tended to decrease serum urea levels (P < 0.10) compared with CN diet. The results of this study suggest that the ratio of Trp, Thr, and Met + Cys to Lys for pigs are modified by sanitary conditions. Furthermore, supplementation of diets with a blend of Trp, Thr, and Met + Cys improves performance, especially under salmonella-challenge and poor housing conditions. Dietary tryptophan, threonine, and methionine supplementation can modulate immune status and influence resilience to sanitary challenges.


Immune system activation alters pigs' physiology and metabolism, increasing maintenance requirements and reducing voluntary feed intake and weight gain. Dietary functional amino acid supplementation (tryptophan, threonine, and methionine) is a strategy to support the immune system activation for immune components production, maintenance of the gut barrier integrity, and reduction of the oxidative status. Additionally, amino acid supplementation may mitigate growth performance losses. In this context, this study was conducted to investigate the effect of diets with or without tryptophan, threonine, and methionine supplementation on the performance and immune system activation of growing pigs under a sanitary challenge. The amino acid supplementation mitigated the immune system activation of challenged growing pigs and improved growth performance when compared to pigs fed diets with no supplementation. The functional amino acid supplementation may be an efficient nutritional strategy to optimize health and growth performance of immune-challenged pigs.


Assuntos
Treonina , Triptofano , Suínos , Animais , Treonina/farmacologia , Qualidade Habitacional , Aminoácidos/metabolismo , Dieta , Suplementos Nutricionais , Ureia , Salmonella typhimurium , Metionina , Ração Animal/análise
17.
Vet Res Commun ; 47(3): 1615-1627, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37038001

RESUMO

Canine Soft Tissue Sarcoma (STS) cell line A-72 has been largely employed for antiviral and antiproliferative studies. However, there are few information on their characteristics. Our aim was to evaluate A-72 expression level of genes and proteins involved in the innate immune response and cell cycle, their ability to respond to infective stressors and their possible use as a cellular model for anti-cancer studies in human and animal medicine. For this purpose, we evaluated the basal expression of immune-related, cell cycle and DNA repair genes on this cell line and tumoral tissues. A-72 ability to respond to a wild-type strain of Salmonella typhimurium was assessed. S. typhimurium showed ability to penetrate A-72 causing pro-inflammatory response accompanied by a decrease of cell viability. IL10 and IL18 genes were not expressed in A-72 while CXCL8, NOS2, CXCR4 and PTEN were highly expressed in all samples and TP53 was slightly expressed, as shown in human STS. Our results outline the ability of A-72 to respond to a bacterial agent by modifying the expression of important genes involved in innate immune response and provide a useful model for in vitro evaluation of new therapeutic approaches that could be translated into the human oncology.


Assuntos
Doenças do Cão , Sarcoma , Animais , Cães , Humanos , Sarcoma/genética , Sarcoma/veterinária , Sarcoma/microbiologia , Linhagem Celular , Salmonella typhimurium/genética , Modelos Animais , Imunidade Inata/genética
18.
Int J Food Microbiol ; 395: 110190, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37030193

RESUMO

This study evaluated the potential of fermented garlic as a marinated lamb sauce ingredient to improve the quality and shelf life of chilled lamb. Garlic was subjected to Lacto-fermentation for 72 h at 37 °C using Lacticaseibacillus casei. The 1H NMR metabolomics profile showed the presence of eight amino acids and five organic acids in fermented garlic, indicating the attribution to the antioxidant and antimicrobial activities. The FRAP and DPPH assays of fermented garlic revealed antioxidant activities of 0.45 ± 0.09 mmol/100 g DW and 93.85 ± 0.02 %, respectively. Meanwhile, fermented garlic inhibited the growth of Escherichia coli (95 %), Staphylococcus aureus (99 %) and Salmonella Typhimurium (98 %). When fermented garlic was added to the marinade sauce, it successfully reduced the microbial load of lamb meat by 0.5 log CFU/g after 3 days of storage. There were no significant differences in color between the control and marinated lamb after 3 days of marinating in a sauce formulated with fermented garlic. Furthermore, marinated lamb significantly improved water-holding capacity, texture, juiciness, and overall acceptance. These findings indicated a potential addition of fermented garlic in marinade lamb sauce recipes to improve the quality and safety of meat products.


Assuntos
Alho , Produtos da Carne , Carne Vermelha , Animais , Ovinos , Alho/química , Antioxidantes , Produtos da Carne/análise , Salmonella typhimurium , Carne/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-36868693

RESUMO

The roots of Paeonia lactiflora Pall., (Paeoniae Radix, PL) are a well-known herbal remedy used to treat fever, rheumatoid arthritis, systemic lupus erythematosus, hepatitis, and gynecological disorders in East Asia. Here we evaluated the genetic toxicity of PL extracts (as a powder [PL-P] and hot-water extract [PL-W]) in accordance with the Organization for Economic Co-operation and Development guidelines. The Ames test revealed that PL-W was not toxic to S. typhimurium strains and E. coli in absence and presence of the S9 metabolic activation system at concentrations up to 5000 µg/plate, but PL-P produced a mutagenic response to TA100 in the absence of S9 mix. PL-P was cytotoxic in in vitro chromosomal aberrations (more than a 50 % decrease in cell population doubling time), and it increased the frequency of structural and numerical aberrations in absence and presence of S9 mix in a concentration-dependent manner. PL-W was cytotoxic in the in vitro chromosomal aberration tests (more than a 50 % decrease in cell population doubling time) only in the absence of S9 mix, and it induced structural aberrations only in the presence of S9 mix. PL-P and PL-W did not produce toxic response during the in vivo micronucleus test after oral administration to ICR mice and did not induce positive results in the in vivo Pig-a gene mutation and comet assays after oral administration to SD rats. Although PL-P showed genotoxic in two in vitro tests, the results from physiologically relevant in vivo Pig-a gene mutation and comet assays illustrated that PL-P and PL-W does not cause genotoxic effects in rodents.


Assuntos
Aberrações Cromossômicas , Paeonia , Extratos Vegetais , Animais , Camundongos , Ratos , Dano ao DNA , Escherichia coli , Camundongos Endogâmicos ICR , Paeonia/toxicidade , Ratos Sprague-Dawley , Extratos Vegetais/toxicidade , Raízes de Plantas/toxicidade , Salmonella typhimurium
20.
Poult Sci ; 102(4): 102496, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736141

RESUMO

Salmonella typhimurium (ST) is a common foodborne pathogen that severely affects the health of humans and livestock. Protocatechuic acid (PCA) has been shown to possess anti-inflammatory and anti-bacterial functions. Chickens were used to investigate the effect of PCA on the gut health infected with ST. A total of one hundred eighty, 1-d-old birds were randomly allocated into 3 treatments, each with 6 replicates per treatment and 10 chicks per replicate. Broiler chicks in the control and ST treatment were fed a basal diet, and birds in the PCA+ST treatment received the basal diet with 600 mg/kg PCA. On d 14 and 16 of the trial, broilers in ST and PCA+ST treatments received an oral dose of ST, while broilers in CON received an equal amount of PBS. The data were analyzed by the one-way ANOVA. Dietary PCA increased (P < 0.05) final body weight, average daily gain, and feed to gain ratio in ST-challenged Yellow broilers. Protocatechuic acid significantly alleviated ST-induced intestinal mucosal injury reflected in the decreased (P < 0.05) plasma activity of diamine oxidase and ileal apoptosis, with increased (P < 0.05) ileal villus height and villus height/crypt depth. Protocatechuic acid treatment significantly decreased (P < 0.05) ST-induced proinflammatory cytokine (Interleukin-1ß, Interleukin-6, Tumor necrosis factor-α, and Interferon-ß) content in ileum. Meanwhile, PCA treatment significantly increased (P < 0.05) the transcript abundances of claudin 1 (CLDN1), zonula occludens-1 (ZO-1), and mucin 2 (MUC2) in ileum, all related to the intestinal barrier in ST-challenged Yellow broilers. Additionally, PCA also increased (P < 0.05) the diversity and richness of the cecal microflora as reflected by reduced (P < 0.05) abundance of Bacteroidota, Proteobacteria and Escherichia-Shigella, and increased (P < 0.05) abundance of Firmicutes and Lactobacillus in ST-challenged Yellow broilers. These findings indicate that PCA relieves ST-induced loss weight, intestinal barrier injury, inflammatory response, and improves intestinal microbiota composition in Yellow broilers.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Íleo , Intestinos , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA