Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochemistry ; 137: 24-33, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28190677

RESUMO

Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.


Assuntos
Liases Intramoleculares/metabolismo , Lavandula/enzimologia , Óleos Voláteis/química , Óleos de Plantas/química , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Canfanos/química , Cânfora/química , Domínio Catalítico , Clonagem Molecular , Flores/enzimologia , Liases Intramoleculares/genética , Modelos Moleculares , Filogenia , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Salvia officinalis/enzimologia , Relação Estrutura-Atividade
2.
J Plant Physiol ; 169(4): 353-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22196947

RESUMO

Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and ß-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/ß-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).


Assuntos
Alquil e Aril Transferases/genética , Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Monoterpenos/metabolismo , Salvia officinalis/enzimologia , Estações do Ano , Alquil e Aril Transferases/metabolismo , Monoterpenos Bicíclicos , Cânfora/metabolismo , Cicloexanóis/metabolismo , Eucaliptol , Monoterpenos/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Medicinais , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Regressão , Salvia officinalis/genética , Salvia officinalis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA