Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.478
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503700

RESUMO

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos de Ervas Chinesas/química , Ácido Betulínico , Saponinas/química , Ácidos Oleicos , Cromatografia Líquida de Alta Pressão , Ziziphus/química , Sementes
2.
World J Microbiol Biotechnol ; 40(5): 152, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553646

RESUMO

Saponins are a large group of compounds, produced mostly by plants as a side product of their metabolic activity. These compounds have attracted much attention over the years mostly because of their surface activity and antibacterial, anti-inflammatory and antifungal properties. On the other hand, most of the hitherto research has concerned the action of saponins against microbial cells as a whole. Therefore, knowing the possible interaction of saponins with biomembrane, we decided to check in-vitro the influence of saponin-rich extract of Saponaria officinalis on spheroplasts of two Candida sp. The obtained results show that 10 mg L- 1 of extract increased the permeability of spheroplasts up to 21.76% relative to that of the control sample. Moreover, the evaluation of surface potential has revealed a decrease by almost 10 mV relative to that of the untreated samples. Such results suggest its direct correlation to integration of saponins into the biomembrane structure. The obtained results have proved the antifungal potential of saponins and their ability of permeabilization of cells. This proves the high potential of saponins use as additives to antifungal pharmaceutics, which is expected to lead to improvement of their action or reduction of required dosage.


Assuntos
Saponaria , Saponinas , Antifúngicos/farmacologia , Antifúngicos/química , Saponaria/química , Saponinas/farmacologia , Saponinas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Candida , Permeabilidade
3.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542930

RESUMO

Rhizoma Panacis Japonici (RPJ) is an ancient herbal medicine from China that has long been employed for its medicinal benefits in relieving arthritis physical debility and diverse afflictions. The primary bioactive constituents found in RPJ are triterpene saponins, which exhibit numerous pharmacological actions, including anti-inflammatory, antioxidant, and immunomodulating effects. The present study established a straightforward and effective approach for characterizing triterpene saponins in RPJ. An offline HILIC × RP LC/QTOF-MS method was developed, along with a self-constructed in-house database containing 612 saponins reported in the Panax genus and 228 predicted metabolites. The approach achieved good chromatographic performance in isolating triterpene saponins of RPJ, with the HILIC column as the first dimension (1D) and the BEH C18 column as the second dimension (2D). The developed two-dimensional liquid chromatography system exhibited an orthogonality of 0.61 and a peak capacity of 1249. Detection was performed using a QTOF mass spectrometer in a data-independent manner (MSE) in a negative ion mode. Using the in-house database, the collected MS data were processed by an automatic workflow on UNIFI 1.8.2 software, which included data correction, matching of precursor and product ions, and peak annotation. In this study, 307 saponins were characterized from RPJ and 76 saponins were identified for the first time in Panax japonicus. This research not only enhances our understanding of the chemical characteristics of RPJ but also offers a simple and efficient method for analyzing the complex composition of herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas , Panax , Plantas Medicinais , Saponinas , Triterpenos , Saponinas/química , Triterpenos/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas , Plantas Medicinais/química
4.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542951

RESUMO

The fruits of Solanum torvum Swartz, a wild relative of eggplant, are consumed as a wild vegetable in tropical regions of Africa, Asia, and South America. In traditional Chinese medicine, it is believed to have anti-inflammatory and sedative effects. In the Philippines, water decoction is used to treat hyperactivity disorder. Twenty-two steroidal saponins were isolated and purified from the fruits grown in Yunnan, China, including six new compounds: torvosides U-Z (1-6). During drying and cooking, the saponins may undergo transformation, resulting in small amounts of sapogenins. These transformations can include dehydration of hydroxyl groups at position C22, formation of double bonds at position 20, 22 or 22, 23, and even formation of peroxide products. Saponin compounds torvoside X (4), torvoside Y (5), torvoside A (7), and (25S)-3-oxo-5α-spirostan-6α-yl-O-ß-d-xylopyranoside (20), which are glycosylated at C-6, showed certain anti-epileptic activity in a pentylenetetrazole-induced zebrafish seizure model. No antiproliferative activity was detected when tested on the cancer cell line HepG2, and no hepatotoxic effect was noted on normal liver cell line LO2.


Assuntos
Saponinas , Solanum melongena , Solanum , Animais , Solanum/química , Frutas/química , Peixe-Zebra , Pentilenotetrazol , China , Saponinas/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/análise , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
5.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Saponinas , Triterpenos , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química
6.
Phytomedicine ; 128: 155432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518645

RESUMO

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Assuntos
Antineoplásicos Fitogênicos , Saponinas , Esteroides , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Humanos , Esteroides/farmacologia , Esteroides/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos
7.
Fitoterapia ; 174: 105858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365071

RESUMO

The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.


Assuntos
Ecossistema , Saponinas , Humanos , Estrutura Molecular , Extratos Vegetais , Saponinas/química , Tensoativos/química
8.
Planta Med ; 90(5): 397-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365219

RESUMO

Agave applanata is a Mexican agave whose fresh leaves are employed to prepare an ethanol tonic used to relieve diabetes. It is also applied to skin to relieve varicose and diabetic foot ulcers, including wounds, inflammation, and infections. In this study, the chemical composition of this ethanol tonic is established and its association with antihyperglycemic, anti-inflammatory, antimicrobial, and wound healing activities is discussed. The fresh leaves of A. applanata were extracted with ethanol : H2O (85 : 15). A fraction of this extract was lyophilized, and the remainder was partitioned into CH2Cl2, n-BuOH, and water. CH2Cl2 and n-BuOH fractions were subjected to a successive open column chromatography process. The structure of the isolated compounds was established using nuclear magnetic resonance and mass spectrometry spectra. The antihyperglycemic activity was evaluated through in vivo sucrose and glucose tolerance experiments, as well as ex vivo intestinal absorption and hepatic production of glucose. Wound healing and edema inhibition were assayed in mice. The minimum inhibitory concentrations (MICs) of the hydroalcoholic extract, its fractions, and pure compounds were determined through agar microdilution against the most isolated pathogens from diabetic foot ulcers. Fatty acids, ß-sitosterol, stigmasterol, hecogenin (1: ), N-oleyl-D-glucosamine, ß-daucosterol, sucrose, myo-inositol, and hecogenin-3-O-α-L-rhamnopyranosyl-(1 → 3)-ß-D-xylopyranosyl-(1 → 2)-[ß-D-xylopyranosyl-(1 → 3)-ß-D-glucopyranosyl-(1 → 3)]-ß-D-glucopyranosyl-(1 → 4)-ß-D-galactopyranoside (2: ) were characterized. This research provides evidence for the pharmacological importance of A. applanata in maintaining normoglycemia, showing anti-inflammatory activity and antimicrobial effects against the microorganisms frequently found in diabetic foot ulcers. This plant plays an important role in wound healing and accelerated tissue reparation.


Assuntos
Agave , Pé Diabético , Sapogeninas , Saponinas , Camundongos , Animais , Agave/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saponinas/química , Hipoglicemiantes/farmacologia , Anti-Inflamatórios/farmacologia , Etanol , Cicatrização , Glucose , Sacarose
9.
Zhongguo Zhong Yao Za Zhi ; 49(2): 304-314, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403306

RESUMO

Minor ginsenosides are a class of processed saponins with minor natural content, high bioavailability, and outstanding bio-logical activity, which are usually obtained by biological or chemical transformation of prototype saponins directly extracted from Panax plants. In recent years, with the clarification of the biosynthetic pathway of saponins and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce saponins. Minor ginsenosides have received widespread attention because of their remarkable biological activities in enhancing the immune function of the body and antitumor property. At present, most of the reviews on minor ginsenosides focus on transformation preparation, process optimization, and pharmacological activity, but there are some deficiencies in industrial analysis. This study summarized structural types, pharmacological activities, sources of acquisition, and transformation pathways of minor ginsenosides based on the relevant literature in China and abroad, proposed problems in the preparation of existing minor ginsenosides, and discussed the future research and utilization prospects, to provide a theoretical basis for improving the basic research of minor ginsenosides and promoting their industrialization.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/química , Saponinas/química , Panax/química , Vias Biossintéticas , Biologia Sintética
10.
Fitoterapia ; 174: 105833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301935

RESUMO

Five new steroidal saponins, paripolins D-H (1-5), and 6 known compounds (6-11) were isolated from the aerial parts of Paris polyphylla var. yunnanensis. The structures of 1-5 were determined using spectroscopic analyses in conjunction with acid hydrolysis. It is for the first time to report the 12-hydroxysteroidal saponins from the genus Paris. The effect of all isolated compounds on blood coagulation was determined in vitro using the plasma recalcification time method. Compounds 1 and 2 showed potent procoagulant activity, and 5-11 exhibited significant anticoagulant activity.


Assuntos
Liliaceae , Saponinas , Liliaceae/química , Rizoma/química , Estrutura Molecular , Saponinas/farmacologia , Saponinas/química , Coagulação Sanguínea
11.
Bioorg Chem ; 145: 107230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387397

RESUMO

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Triterpenos , Humanos , Estrutura Molecular , Astragalus propinquus/química , Simulação de Acoplamento Molecular , Saponinas/química , Ácido Oleanólico/química , Componentes Aéreos da Planta/química , Triterpenos/farmacologia , Triterpenos/química
12.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339223

RESUMO

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Assuntos
Aralia , Plantas Medicinais , Saponinas , Triterpenos , Aralia/genética , Aralia/química , Saponinas/química , Triterpenos/química , Plantas Medicinais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Folhas de Planta/metabolismo
13.
Biomed Chromatogr ; 38(4): e5824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214038

RESUMO

To enhance the quality evaluation and control of traditional Chinese medicine (TCM) and ensure the safety and efficacy of clinical medication, it is imperative to establish a comprehensive quality assessment method aligned with TCM efficacy. This study uses a representative Chinese medicine with multi-origin and multi-efficacy, Paris polyphylla var. yunnanensis (PY), as an illustrative example. Surprisingly, despite the high fingerprint similarity among the 12 batches of PY samples collected from various regions in Yunnan, a notable variation in the composition and content of components was observed. The chromatographic analysis identified seven common peaks, namely, polyphyllin I, polyphyllin II, polyphyllin V, polyphyllin VI, polyphyllin VII, polyphyllin H, and polyphyllin D. In the bioactivity evaluation, an in vitro antiplatelet aggregation model induced by adenosine diphosphate was established, showcasing excellent stability. The maximum antiplatelet aggregation inhibition rate for all PY samples consistently remained stable at 73.1%-99.1%. However, the 50% inhibitory concentration (IC50 ) values exhibited a range from 1.615 to 18.200 mg/mL. This approach not only meets high-throughput screening requirements but also demonstrates remarkable discrimination. The results of chemical and bioactivity evaluations were analyzed using hierarchical cluster analysis and canonical correlation analysis. Polyphyllin I, polyphyllin II, polyphyllin VII, polyphyllin H, and polyphyllin D were identified as the Q-markers for antiplatelet aggregation in PY samples. Validation of the bioactivity for these monomer components aligned with the previously mentioned findings. Notably, this study established a spectrum-effect model for PY samples, enhancing the scientific robustness of the quality evaluation method. Furthermore, these findings offer valuable research insights for improving the quality assessment of other TCMs.


Assuntos
Liliaceae , Saponinas , China , Saponinas/química , Medicina Tradicional Chinesa , Cromatografia Líquida de Alta Pressão/métodos , Liliaceae/química
14.
Nat Prod Res ; 38(4): 601-606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36924396

RESUMO

Two new vernonioside K (1) and vernonioside L (2) and four known Δ7,9(11) stigmastane-type steroidal saponins-vernonioside B2 (3), vernoniacum B (4), vernonioside B1 (5), and vernoamyoside A (6)-were isolated from the leaves of Vernonia amygdalina. Their structures were determined by comprehensive spectroscopic analysis with one-dimensional nuclear magnetic resonance, two-dimensional nuclear magnetic resonance, and high-resolution mass spectrometry. All isolated compounds (1-6) were evaluated to determine their inhibitory effects on α-glucosidase and xanthine oxidase. Among them, two new compounds 1 and 2 showed significant inhibition of α-glucosidase with IC50 values of 78.56 ± 7.28 and 14.74 ± 1.57 (µM), respectively, comparable with acarbose as a positive control (127.53 ± 1.73 µM); none of these compounds inhibited xanthine oxidase activity. Compounds 1 and 2 are promising candidates for the development of antidiabetic agents from natural sources.


Assuntos
Saponinas , Vernonia , alfa-Glucosidases , Vernonia/química , Xantina Oxidase , Saponinas/farmacologia , Saponinas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Esteroides/química
15.
Chem Biodivers ; 21(2): e202301764, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050750

RESUMO

Dracaena cambodiana Pierre ex Gagnep. is well known as a medicinal plant and widely distributed in Vietnam. Phytochemical investigation on the trunks of D. cambodiana lead to the isolation of four undescribed compounds (1-4) together with seven known ones (5-11). Their structures were determined to be pennogenin-24-yl-O-ß-D-glucopyranoside (1), 17α-hydroxycambodianoside C (2), (25R)-27-hydroxypenogenin 3-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3), (3ß,25R)-17α,22α-dihydroxy-furost-5-en-3-yl-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (4), dracagenin A (5), 1-O-ß-D-glucopyranosyl-2-hydroxy-4-allylbenzene (6), 1-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-2-hydroxy-allylbenzene (7), 2-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-1-hydroxy-allylbenzene (8), cinnamrutinoside A (9), icariside D1 (10), and seco-isolariciresinol 9-O-ß-glucopyranoside (11) by extensive spectroscopic investigation, HR-ESI-MS, 1D and 2D NMR spectra. The anti-inflammatory activity of the isolated compounds was evaluated on macrophages. Compounds 1-6 significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Among them, compound 1 showed the best inhibitory activity with an IC50 value of 8.90±0.56 µM.


Assuntos
Derivados de Alilbenzenos , Dracaena , Saponinas , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Óxido Nítrico , Saponinas/farmacologia , Saponinas/química , Glucosídeos/química , Glucosídeos/farmacologia
16.
Nat Prod Res ; 38(1): 169-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36190791

RESUMO

The rhizome of Rohdea chinensis (Baker) N.Tanaka (RRc) is a famous folk medicine for the treatment of carbuncles and pharyngitis. Steroidal saponins (SSs) were considered to be the most abundant active constituents in RRc. However, to date, the in-depth study of SSs is still lacking. This study was aimed to investigate the SSs profiles of RRc extract by HPLC-ESI-QTOF-MS/MS. Analysis was performed on an Agilent poroshell 120 EC-C18 column (2.1 mm × 100 mm, i.d., 2.7 µm) with 0.1% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. The results showed that 32 SSs including 20 furospirostanol, 11 spirostanol and 1 pseudo-spirostanol saponins were identified, 5 of which were reported in this plant for the first time. This is the first report on the analysis of SSs in RRc. This novel analysis method may stimulate further research regarding the identification of SSs in other plant species.


Assuntos
Asparagaceae , Saponinas , Espirostanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/química
17.
J Ethnopharmacol ; 319(Pt 3): 117250, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37832811

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the theory of traditional Chinese medicine (TCM), diabetic cardiomyopathy (DCM) belongs to the category of "Xiaoke disease" according to the symptoms, and "stasis-heat" is the main pathogenesis of DCM. The Chinese medicine Anemarrhena asphodeloides Bunge (AAB), as a representative of heat-clearing and engendering fluid, is often used clinically in the treatment of DCM. Anemarrhena asphodeloides Bunge total saponins (RATS) are the main bioactive components of AAB, the modern pharmacologic effects of RATS are anti-inflammatory, hypoglycemic, and cardioprotective. However, the potential protective mechanisms of RATS against DCM remain largely undiscovered. AIM OF THE STUDY: The primary goal of this study was to explore the effect of RATS on DCM and its mechanism of action. MATERIALS AND METHODS: Streptozotocin and a high-fat diet were used to induce DCM in rats. UHPLC/Q-TOF-MS was used to determine the chemical components of RATS. The degenerative alterations and apoptotic cells in the heart were assessed by HE staining and TUNEL. Network pharmacology was used to anticipate the probable targets and important pathways of RATS. The alterations in metabolites and main metabolic pathways in heart tissue were discovered using 1 H-NMR metabolomics. Ultimately, immunohistochemistry was used to find critical pathway protein expression. RESULTS: First of all, UHPLC/Q-TOF-MS analysis showed that RATS contained 11 active ingredients. In animal experiments, we found that RATS lowered blood glucose and lipid levels in DCM rats, and alleviated cardiac pathological damage, and decreased cardiomyocyte apoptosis. Furthermore, the study found that RATS effectively reduced inflammatory factor release and the level of oxidative stress. Mechanistically, RATS downregulated the expression levels of PI3K, AKT, HIF-1α, LDHA, and GLUT4 proteins. Additionally, glycolysis was discovered to be a crucial pathway for RATS in the therapy of DCM. CONCLUSIONS: Our findings suggest that the protective effect of RATS on DCM may be attributed to the inhibition of the PI3K/AKT/HIF-1α pathway and the correction of glycolytic metabolism.


Assuntos
Anemarrhena , Diabetes Mellitus , Cardiomiopatias Diabéticas , Saponinas , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Anemarrhena/química , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Glicólise
18.
Fitoterapia ; 173: 105778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128620

RESUMO

Saikosaponin d (SSd) is the main component of Bupleuri Radix, a famous traditional Chinese herbal medicine, with high medicinal value. An endophytic fungus (CHS3) was isolated from Bupleurum scorzonerifolium Willd. in the early stage of our research, and we found that CHS3 could promote the accumulation of SSd in Bupleurum scorzonerifolium Willd. suspension cells (BSS cells). It is of practical significance to identify the mechanism that CHS3 promoted the accumulation of SSd and increased the production of SSd in suspension cells. To search the influence of CHS3 on SSd synthesis in the BSS cells, we co-cultured CHS3 with the BSS cells and compared the SSd content in BSS cells before and after co-culture using high-performance liquid chromatography (HPLC). Then the Illumina HiSeq 2500 was performed to detect the transcriptome of the BSS cells before and after co-culture and analyzed for the KEGG enrichment. The expression of genes involved in SSd synthesis was finally corroborated by qPCR analysis. Among which 11 key genes in connection with SSd synthesis were increased in BSS cells of co-cultured group compared with the BSS cells of the control group. In conclusion, CHS3 could promote the accumulation of SSd in BSS cells, and the molecular mechanism was related to its ability to regulate the MVA pathway, the calcium signaling pathway, and the AMPK signaling pathway by upregulating the expressions of ANT, CypD, CaM, AMPK, AATC, HMGS, HMGR, MVK, MVD, SS, and SE.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Ácido Oleanólico/análogos & derivados , Saponinas , Bupleurum/química , Medicamentos de Ervas Chinesas/química , Proteínas Quinases Ativadas por AMP , Estrutura Molecular , Saponinas/química , Perfilação da Expressão Gênica
19.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069381

RESUMO

Ardisiae Crenatae Radix is an ethnic medicinal herb with good anti-inflammatory activity. Ardisiacrispin B is one of the main components in Ardisiae Crenatae Radix extract, with a content of up to 16.27%, and it may be one of the pharmacological components through which Ardisiae Crenatae Radix exerts anti-inflammatory activity. At present, reports on ardisiacrispin B mainly focus on anti-tumor effects, and there have been no reports on anti-inflammatory activities. As a triterpenoid saponin, due to its large molecular weight and complex structure, the composition of substances that function in the body may include other forms after metabolism, in addition to compounds with original structures. Exploring the anti-inflammatory effects on the prototypes and metabolites of the compound may provide a more comprehensive response to the characteristics of ardisiacrispin B's anti-inflammatory action. In this study, ardisiacrispin B was analyzed for metabolites to explore its metabolic processes in vivo. Subsequently, the anti-inflammatory effects of the prototypes and metabolites were further analyzed through network pharmacology, with the expectation of discovering the signaling metabolic pathways through which they may act. Finally, the anti-inflammatory effects of ardisiacrispin B in vitro and the effects on key signaling pathways at the protein level were explored. The results of this study showed that the isolated compounds were confirmed to be ardisiacrispin B. After the metabolite analysis, a total of 26 metabolites were analyzed, and the metabolism process in rats mainly involves oxidation, dehydration, glucuronide conjugation, and others. Speculation as to the anti-inflammatory molecular mechanisms of the prototypes and metabolites of ardisiacrispin B revealed that it may exert its anti-inflammatory effects mainly by affecting the PI3K-AKT pathway. Further anti-inflammatory mechanisms demonstrated that ardisiacrispin B had a good anti-inflammatory effect on LPS-induced RAW264.7 cells and a strong inhibitory effect on NO, TNF-α, and IL-1ß release in cells. Furthermore, it had significant inhibitory effects on the expression of PI3K, P-PI3K, AKT, and P-AKT. This study supplements the gaps in the knowledge on the in vivo metabolic process of ardisiacrispin B and explores its anti-inflammatory mechanism, providing an experimental basis for the development and utilization of pentacyclic triterpenoids.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Saponinas , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Saponinas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Simulação de Acoplamento Molecular
20.
Stud Health Technol Inform ; 308: 768-776, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007809

RESUMO

The effective composition, antioxidant, enzyme inhibition and bile binding ability of Ginseng flowers after different steaming times were studied. The results showed that different steaming times affected the effective components of ginseng flower, the content of polysaccharide and total saponins reached the highest when steaming for 5 times, the total flavonoids and phenol increased with the times of steaming. Steaming treatment significantly induced the ability of antioxidant and inhibition of α-amylase; but reduced the inhibition of α-glucosidase and cholate binding ability. Steaming treatment improved the effective content of ginseng flower and facilitate the production of low polar saponins; steaming changes the composition of ginsenoside.


Assuntos
Ginsenosídeos , Panax , Saponinas , Panax/química , Antioxidantes/análise , Ginsenosídeos/farmacologia , Ginsenosídeos/análise , Ginsenosídeos/química , Saponinas/análise , Saponinas/química , Saponinas/farmacologia , Flores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA