Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Parasitol ; 220: 108035, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189737

RESUMO

Cystoisospora suis is a common diarrheal pathogen of piglets and typically controlled by metaphylactic toltrazuril application. Recently, toltrazuril resistance has been reported in the field; however, both evaluation of toltrazuril efficacy against field isolates and the anticoccidial drug development for pigs is hampered by costs and labor of animal experimentation. Therefore an in vitro merozoite development assay was developed to evaluate the efficacy of compounds against C. suis in vitro. Monolayers of IPEC-1 cells were infected with sporozoites derived from oocysts of defined C. suis laboratory strains and the optimal infection dose as well as concentration, time point and duration of treatment were evaluated by quantitative real-time PCR. Cell cultures were treated with bumped kinase inhibitor (BKI) 1369 at different time points to evaluate the possibility to delineate effects on different developmental stages in vitro during invasion and early infection, and to determine different inhibitory concentrations (IC50, IC95). BKI 1369 had an IC50 of 35 nM and an IC95 of 350 nM. Dose- and duration-dependent efficacy was seen when developing stages were treated with BKI 1369 after infection (days 0-1, 2-3 and 2-5) but not when sporozoites were pre-incubated with BKI 1369 before infection. Efficacies of further BKIs were also evaluated at 200 nM. BKI 1318, 1708, 1748 and 1862 had an efficacy comparable to that of BKI 1369 (which is also effective in vivo). BKI 1862 showed a more pronounced loss of efficacy in lower concentrations than BKI 1369, signifying pharmacokinetic differences of similar compounds detectable in vitro. In addition, the effects of toltrazuril and its metabolites, toltrazuril sulfoxide and toltrazuril sulfone, on a toltrazuril sensitive and a resistant strain of C. suis were evaluated. Inhibition of merozoite growth in vitro by toltrazuril and its metabolites was dose-dependent only for toltrazuril. Clear differences were noted for the effect on a toltrazuril-sensitive vs. a resistant strain, indicating that this in vitro assay has the capacity to delineate susceptible from resistant strains in vitro. It could also be used to evaluate and compare the efficacy of novel compounds against C. suis and support the determination of the optimal time point of treatment in vivo.


Assuntos
Coccidiose/veterinária , Coccidiostáticos/farmacologia , Sarcocystidae/efeitos dos fármacos , Doenças dos Suínos/parasitologia , Triazinas/farmacologia , Animais , Linhagem Celular , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Coccidiostáticos/metabolismo , Coccidiostáticos/uso terapêutico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/veterinária , Resistência a Medicamentos , Concentração Inibidora 50 , Merozoítos/efeitos dos fármacos , Merozoítos/crescimento & desenvolvimento , Projetos Piloto , Piperidinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sarcocystidae/crescimento & desenvolvimento , Sulfonas/química , Sulfóxidos/química , Suínos , Doenças dos Suínos/tratamento farmacológico , Triazinas/metabolismo , Triazinas/uso terapêutico
2.
Int J Parasitol ; 47(12): 811-821, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28899692

RESUMO

Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a chronic and debilitating disease that causes systemic and skin manifestations and sterility in bulls. Neither treatments nor vaccines are currently available. In the search for therapeutic candidates, calcium-dependent protein kinases have arisen as promising drug targets in other apicomplexans (e.g. Neospora caninum, Toxoplasma gondii, Plasmodium spp. and Eimeria spp.) and are effectively targeted by bumped kinase inhibitors. In this study, we identified and cloned the gene coding for BbCDPK1. The impact of a library of nine bumped kinase inhibitor analogues on the activity of recombinant BbCDPK1 was assessed by luciferase assay. Afterwards, those were further screened for efficacy against Besnoitiabesnoiti tachyzoites grown in Marc-145 cells. Primary tests at 5µM revealed that eight compounds exhibited more than 90% inhibition of invasion and proliferation. The compounds BKI 1294, 1517, 1553 and 1571 were further characterised, and EC99 (1294: 2.38µM; 1517: 2.20µM; 1553: 3.34µM; 1571: 2.78µM) were determined by quantitative real-time polymerase chain reaction in 3-day proliferation assays. Exposure of infected cultures with EC99 concentrations of these drugs for up to 48h was not parasiticidal. The lack of parasiticidal action was confirmed by transmission electron microscopy, which showed that bumped kinase inhibitor treatment interfered with cell cycle regulation and non-disjunction of tachyzoites, resulting in the formation of large multi-nucleated complexes which co-existed with viable parasites within the parasitophorous vacuole. However, it is possible that, in the face of an active immune response, parasite clearance may occur. In summary, bumped kinase inhibitors may be effective drug candidates to control Besnoitiabesnoiti infection. Further in vivo experiments should be planned, as attainment and maintenance of therapeutic blood plasma levels in calves, without toxicity, has been demonstrated for BKIs 1294, 1517 and 1553.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/isolamento & purificação , Sarcocystidae/efeitos dos fármacos , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/citologia , Fibroblastos/parasitologia , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Proteínas Quinases/química , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Sarcocystidae/genética , Sarcocystidae/crescimento & desenvolvimento , Sarcocystidae/ultraestrutura , Inoculações Seriadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA