Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573429

RESUMO

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Assuntos
Polipeptídeos Semelhantes à Elastina , Seda , Seda/genética , Proteínas de Artrópodes , Elastina/genética , Elastina/química , Elastina/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusão/genética
2.
J Evid Based Dent Pract ; 24(1): 101952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448126

RESUMO

BACKGROUND: In order to achieve uneventful and rapid healing of the tissues, a suture material should be biocompatible, easy to handle, sterile, and have good and uniform tensile strength. Hence, in the present study, characterization of the suture materials was done through a novel green chemistry approach using Punica granatum seed extract. MATERIALS AND METHODS: Ethanolic extract of P. granatum seed was prepared by dissolving 25 g of P. granatum seed powder with 100 mL of ethanol. The obtained extract was coated in silk and Vicryl suture material and was tested for its surface morphology (SEM), tensile strength, anti-microbial activity, biocompatibility, and wound healing potential. RESULTS: Silk and Vicryl sutures coated with P. granatum seed extract showed the uniform coating and deposition of extract with sustaining integrity. Vicryl suture coated with the extract had good tensile strength and antimicrobial activity. The in vitro scratch assay and biocompatibility test showed that the P. granatum seed extract had excellent wound healing potential and can be used without any effect on the viability of the normal cells. CONCLUSION: Within the limitations of the study it can be concluded that P. granatum seed extract coated Vicryl sutures had good tensile strength and anti-microbial activity. P. granatum seed extract also showed excellent biocompatibility and wound healing potential.


Assuntos
Punica granatum , Humanos , Projetos Piloto , Poliglactina 910 , Suturas , Seda , Etanol , Extratos Vegetais/farmacologia
3.
Biomacromolecules ; 25(3): 1916-1922, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38315982

RESUMO

Selective one-dimensional 13C-13C spin-diffusion solid-state nuclear magnetic resonance (SSNMR) provides evidence for CH/π ring packing interactions between Pro and Tyr residues in 13C-enriched Latrodectus hesperus dragline silk. The secondary structure of Pro-containing motifs in dragline spider silks consistently points to an elastin-like type II ß-turn conformation based on 13C chemical shift analysis. 13C-13C spin diffusion measurements as a function of mixing times allow for the measurement of spatial proximity between the Pro and Tyr rings to be ∼0.5-1 nm, supporting strong Pro-Tyr ring interactions that likely occur through a CH/π mechanism. These results are supported by molecular dynamics (MD) simulations and analysis and reveals new insights into the secondary structure and Pro-Tyr ring stacking interactions for one of nature's toughest biomaterials.


Assuntos
Viúva Negra , Aranhas , Animais , Seda/química , Tirosina , Viúva Negra/química , Simulação de Dinâmica Molecular , Prolina , Espectroscopia de Ressonância Magnética
4.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330192

RESUMO

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Assuntos
Fibroínas , Nanoestruturas , Seda/química , Fibroínas/química , Polissacarídeos , Pectinas , Materiais Biocompatíveis/química
5.
Nanoscale Horiz ; 9(4): 609-619, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38288551

RESUMO

Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.


Assuntos
Anti-Infecciosos , Microgéis , Selênio , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Seda/farmacologia , Selênio/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Fungos , Mamíferos
6.
Sci Rep ; 13(1): 20845, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012184

RESUMO

In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.


Assuntos
Fibroínas , Linho , Hipertermia Induzida , Humanos , Fibroínas/química , Hidrogéis/química , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Seda/química
7.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4087-4096, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802776

RESUMO

To understand the current quality status and rearing situation of Bombyx Batryticatus, the authors collected 102 batches of Bombyx Batryticatus from different main producing areas and five major Chinese medicine markets from 2016 to 2018, and measured the properties and quality of the silk gland, to clarify the quality status of Bombyx Batryticatus from different producing areas and markets. In addition, 35 batches of Bombyx Batryticatus from 2019 to 2022 were used to verify the silk gland after revision. Moreover, Beauveria Bassiana was inoculated in the silkworm of 4-5 instars, and standardized rearing was carried out until they die. The death rate and the quality of Bombyx Batryticatus were measured to determine the differences in Bombyx Batryticatus of different instars, and explore the rationality of the infection age of Bombyx Batryticatus in Chinese Pharmacopoeia(2020). The results revealed that in the 102 batches of Bombyx Batryticatus, the qualification rate of silk gland was low; the content of total ash far exceeded the standard; the content of beauvericin varied greatly. The qualification rate of the silk gland of the 35 batches of Bombyx Batryticatus was only 47.49%, which could be increased to 73.00% if the number of silk gland was 2 to 4. The death rate of Bombyx Batryticatus at different infection ages was quite different, with uneven quality. Generally, the yield of Bombyx Batryticatus inoculated on the first day of the fifth instar was high with good quality. Therefore, in combination with the quality and actual production of Bombyx Batryticatus, the following suggestions were proposed for revision of Bombyx Batryticatus in Chinese Pharmacopoeia(2025): The number of silk gland should be revised as 2-4 bright brown or bright black silk glands, after which, the quality of Bombyx Batryticatus could be guaranteed, and the "quality identification based on character" could also be reflected scientifically; the content determination index that the content of beauvericin shall not be less than 0.017% should be added to better control the quality of Bombyx Batryticatus; the infection age should be revised as the first day of the fifth instar to narrow the age span, which could better fit the actual production and ensure the quality of Bombyx Batryticatus.


Assuntos
Bombyx , Medicina Tradicional do Leste Asiático , Animais , Seda , Larva
8.
Chem Biol Drug Des ; 102(5): 1231-1247, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563784

RESUMO

This study aimed to research the possible mechanism and effect of active ingredients of corn silk on Alzheimer's disease (AD) by the method of network pharmacology, molecular docking, and animal experiments. The active ingredients of Corn silk were obtained by searching the TCMSP database and the targets corresponding to the active ingredients of Corn silk were obtained through the TCMSP and SwissTargetPrediction platforms, and the AD targets were obtained in the GeneCards, OMIM, and DisgeNET databases. Cytoscape was employed for creating the "active ingredient-target" relationship network; STRING and Cytoscape for creating the protein-protein interaction (PPI) network. Besides, Meta scape was used for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the intersecting targets; AutoDockTools and Pymol for molecular docking and visualization of core ingredients and core targets; and animal experiments for verifying the anti-AD effect of luteolin. A total of 12 active ingredients of corn silk were screened, including 465 targets and 209 intersected targets. Moreover, GO functional analysis results showed that the anti-AD effect of corn silk was mainly reflected in phosphotransferase activity, response to hormone, membrane raft, etc.; KEGG results indicated the main pathways involving cancer, Alzheimer disease, etc.; and the molecular docking results revealed excellent binding of the core ingredients (α-tocopheryl quinone, luteolin, etc.) to the core targets. Besides, the outcomes of animal experiments exhibited that luteolin not only reduced the expression of inflammatory factors TNF-α and IL-1ß in mice but also attenuated inflammation. With the help of network pharmacology and experimental validation, the material basis and mechanism of the anti-AD of corn silk have been explored in this study. Briefly speaking, luteolin from corn silk plays an anti-AD role by inhibiting inflammation.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Animais , Camundongos , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Zea mays , Farmacologia em Rede , Luteolina , Inflamação , Seda
9.
Int J Biol Macromol ; 249: 126117, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541481

RESUMO

Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.


Assuntos
Alginatos , Microbioma Gastrointestinal , Humanos , Alginatos/química , Preparações de Ação Retardada/farmacologia , Ácido Hialurônico , Seda , Chá , Rim , Ácidos Hexurônicos/química , Ácido Glucurônico/química
10.
J Food Sci ; 88(8): 3341-3356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421346

RESUMO

During the processing of maize, Stigma maydis, also known as corn silk, is normally discarded as waste. Phytochemical research was carried out on the S. maydis to use it as a valuable source of bioactive components. This research aimed to maximize the recovery of free and bound phenolic compounds from corn silk under optimal experimental conditions. Response surface design was operated to optimize the alkaline hydrolysis extraction of bound phytochemicals from corn silk based on total phenolic content and DPPH radical scavenging activity. The optimum conditions (i.e., NaOH concentration 2 M, digestion time 135 min, digestion temperature of 37.5°C, the solid-to-solvent ratio of 1:17.5, and acetone) were obtained. The optimum parameters were used to extract the corn silk. The structures of two compounds isolated from ethyl acetate extracts were then identified as friedelin (1) and (E)-4-(4-hydroxy-3-methoxyphenyl) but-3-en-2-one (2). The DPPH, H2 O2 , and ABTS % inhibition of the compounds is as follows: compound (1) 74.81%, 76.8%, 70.33% and compound (2) 70.37%, 56.70% and 57.46%, respectively. The current study has opened previously unexplored perspectives of the composition of bound compounds in corn silk and established the foundations for more effective processing and utilization of corn waste. PRACTICAL APPLICATION: Bound phenolic compounds from corn silk under optimal experimental conditions were obtained. Corn silk can be utilized as a type of medicinal herb as well as a source of inexpensive natural antioxidants.


Assuntos
Antioxidantes , Plantas Medicinais , Antioxidantes/química , Extratos Vegetais/química , Zea mays/química , Fenóis/química , Seda
11.
Biopolymers ; 114(7): e23554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232459

RESUMO

The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2 CO3 -degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.


Assuntos
Fibroínas , Sericinas , Humanos , Fibroínas/química , Alicerces Teciduais/química , Bromelaínas , Materiais Biocompatíveis/química , Sericinas/química , Peso Molecular , Células Endoteliais/metabolismo , Engenharia Tecidual/métodos , Seda/química , Proliferação de Células
12.
Macromol Biosci ; 23(9): e2300039, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37203244

RESUMO

Meshes from natural silk are hand knitted and surface functionalized to facilitate hernia repair and other load bearing, tissue applications. Purified organic silk is - hand knitted and then coated with chitosan (CH)/bacterial cellulose (BC) blend polymer using four phytochemicals such as pomegranate (PG) peel, Nigella sativa (NS) seed, Licorice root (LE), and Bearberry leaf extracts (BE) separately. Characterizations using GCMS analysis shows the presence of bioactive chemicals in the extracts. Scanning electron microcopy (SEM) shows that the surface is coated with the composite polymer t. Fourier transform infrared spectroscopy (FTIR) shows significant elements found in CH, BC, and phytochemicals in plant extracts with no chemical changes. Tensile strength of the coated meshes is higher to support tissue as implants. The release kinetics suggest sustained release of phytochemical extracts. In vitro studies confirmed the noncytotoxic, biocompatible, wound healing potential of the meshes. Furthermore, gene expression analysis of 3-wound healing genes shows marked increase in the in vitro cell cultures due to the presence of extracts. These results suggest that the composite meshes can efficiently support hernia closure while facilitating wound/tissue healing and combating bacterial infections. Therefore, these meshes can be good candidates for fistula and cleft palate repair.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Seda , Cicatrização , Polímeros , Resistência à Tração , Celulose/química , Telas Cirúrgicas
13.
Environ Sci Pollut Res Int ; 30(26): 68625-68635, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126177

RESUMO

Spent coffee grounds (SCGs) are commonly known as a waste resource and a raw material useful for dyeing. SCG is a rich source of natural colorant from the class of flavonoids and anthocyanins. In this research, silk fiber dyeing with the dye which was extracted from SCGs with different metallic and natural mordants was done by applying pre-, meta-, and post-mordanting methods. Metal salts like tin chloride and copper sulfate as well as such natural materials as pinecone, tannic acid, and lemon peel were used to act as mordants. Color strength and color parameters of the dyed silk fabric samples were evaluated by applying a reflective spectrophotometer. Also, the evaluation of wash and light fastness was done based on ISO standards. The results indicated that in all methods, the metal samples had higher color strength when compared to the bio-mordant ones. Among the used methods and bio-mordants, the use of the pre-mordanting method and pinecone led to the highest amount of color strength. Also, the used bio-mordant could be a suitable substitute for metal mordants in terms of fastness parameters. Among the used methods and mordants, the post-mordanting method and pinecone mordant could provide the best washing and light fastness.


Assuntos
Café , Corantes , Antocianinas , Têxteis , Seda
14.
ACS Appl Mater Interfaces ; 15(8): 10452-10463, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802477

RESUMO

The rapid emergence of drug-resistant bacteria and fungi poses a threat for healthcare worldwide. The development of novel effective small molecule therapeutic strategies in this space has remained challenging. Therefore, one orthogonal approach is to explore biomaterials with physical modes of action that have the potential to generate antimicrobial activity and, in some cases, even prevent antimicrobial resistance. Here, to this effect, we describe an approach for forming silk-based films that contain embedded selenium nanoparticles. We show that these materials exhibit both antibacterial and antifungal properties while crucially also remaining highly biocompatible and noncytotoxic toward mammalian cells. By incorporating the nanoparticles into silk films, the protein scaffold acts in a 2-fold manner; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while also providing a template for bacterial and fungal eradication. A range of hybrid inorganic/organic films were produced and an optimum concentration was found, which allowed for both high bacterial and fungal death while also exhibiting low mammalian cell cytotoxicity. Such films can thus pave the way for next-generation antimicrobial materials for applications such as wound healing and as agents against topical infections, with the added benefit that bacteria and fungi are unlikely to develop antimicrobial resistance to these hybrid materials.


Assuntos
Anti-Infecciosos , Fibroínas , Selênio , Animais , Seda/farmacologia , Antifúngicos/farmacologia , Selênio/farmacologia , Fibroínas/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Bactérias , Mamíferos
15.
Molecules ; 28(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677907

RESUMO

Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.


Assuntos
Antineoplásicos , Bombyx , Fibroínas , Neoplasias , Animais , Humanos , Bombyx/metabolismo , Antocianinas , Seda , Fibroínas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
16.
Drug Deliv ; 30(1): 2168793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36694964

RESUMO

Guava (Psidium guajava L.) is a well-known plant containing high levels of natural antioxidants, the phenolic compounds, which have been employed in numerous cosmetic products. However, these molecules are unstable to oxidants, light, temperature, pH, water, and enzymatic activities. Therefore, to enhance their stability and preserve their antioxidant activity, this study investigated the silk fibroin nanoparticles (SFNs) ability to encapsulate, deliver, and heat-protect the phenolic compounds of the guava leaves ethanolic extract. Firstly, the guava ethanolic extract was produced by maceration, which possessed a total phenolic content of 312.6 mg GAE/g DPW and a high antioxidant activity (IC50 = 5.397 ± 0.618 µg/mL). Then, the extract loaded SFNs were manufactured by desolvation method, and the particles demonstrated appropriate sizes of 200-700 nm with narrow size distribution, spherical shape, silk-II crystalline structure, high drug entrapment efficiency of > 70% (dependent on the fibroin content), and a two-phase sustained drug release for at least 210 min. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the antioxidant activity of the guava extract was well-preserved in the extract loaded SFNs. Finally, after being treated with high temperature of 70 °C for 24 h, the guava extract almost loses all of its antioxidant property (5 times decrement), whereas the extract loaded SFNs could retain the extract activity. Conclusively, the SFNs proved much potential to deliver and heat-protect the guava extract phenolic compounds, and preserve their antioxidant activity. Confirmed by this case, SFNs could be further explored in protecting other natural compounds from environmental factors.


Assuntos
Fibroínas , Nanopartículas , Psidium , Antioxidantes/química , Psidium/química , Seda , Fenóis , Extratos Vegetais/química , Folhas de Planta/química
17.
Poult Sci ; 102(2): 102360, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512872

RESUMO

The current study aimed to investigate the dietary supplementation effect of corn silk (CS) on performance and blood chemistry of brown and white-feathered quails during the grower and layer periods. Japanese quails of brown and white-feathered color (180 birds/variety at 2 wks old) were randomly allotted into three groups with 3 replicates each (n = 20 birds/replicate). Corn silk powder (CS) was supplemented to the basal diet at 0, 1, and 2% of the diet for each quail variety for 1-month growing period, then continued for another 6-wk laying period to assess the egg production and egg quality characteristics. CS supplementation at 1% and 2% for brown and white-feathered quails respectively improved their growth performance (body weight and weight gain), carcass yield, and intestinal villi length with increasing feed consumption but without changes in feed conversion ratio. In both quail varieties, CS addition had a hypolipidemic effect, confirmed by lowering serum triglyceride (TG), cholesterol (CHO), and low density lipoprotein (LDL) while increased high density lipoprotein (HDL) concentrations (P < 0.05) with a clear response observed in white quails than the brown ones. Besides, CS supplementation increased (P = 0.002) hen day egg production in brown feathered quails, while reducing it in the white-feathered quails compared with the CS-free diet. The increased egg production was not significantly (P > 0.05) correlated with lower content of TG and CHO, while significantly increased the antioxidant content in both quail varieties (P < 0.05). Moreover, CS dietary supplementation significantly enhanced (P = 0.003) the yolk color, especially in brown-feathered quail. In conclusion, CS can be safely supplemented to the Japanese quail diet (1% and 2% for brown-feathered and white-feathered quails respectively) to improve growth performance, and egg quality characteristics.


Assuntos
Coturnix , Zea mays , Animais , Feminino , Coturnix/fisiologia , Galinhas , Suplementos Nutricionais , Dieta/veterinária , Codorniz , Colesterol , Seda , Ração Animal/análise
18.
Nat Prod Res ; 37(5): 835-839, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35736954

RESUMO

Corn silk (Stigma maydis), being the styles and stigmas of maize, is a famous traditional medicine and functional tea in China. Research into the chemical composition of corn silk led to the identification of an unreported flavone (1, silkone A), accompanying with three known flavonoids (2-4). And their structures were elucidated through comprehensive spectroscopic analysis. Each obtained compound was evaluated for antioxidant capacity by DPPH, ABTS and FRAP assays. As a result, all tested compounds exhibited stronger radicals scavenging activities than Trolox in ABTS radical assay and displayed relatively weak antioxidant capacity in the other two experiments. Tyrosinase inhibitory activities of compounds 1-4 were also investigated, and compounds 3 and 4 demonstrated moderate inhibitory activities to tyrosinase with IC50 values of 0.49 and 0.21 mM, respectively, which was further investigated through molecular docking calculation. These results may contribute to the development of novel antioxidants and tyrosinase inhibitors from corn silk.


Assuntos
Antioxidantes , Flavonoides , Antioxidantes/química , Flavonoides/química , Zea mays/química , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Seda
19.
Environ Sci Pollut Res Int ; 30(8): 21863-21871, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36279062

RESUMO

For the current study, Bougainvillea flowers as environment friendly sustainable source of plant-based natural dye have been selected as an alternative to toxic synthetic dyes for dyeing of cotton and silk. Natural colorant from Bougainvillea flowers (Bougainvillea glabra) was extracted using aqueous and acidic extraction media. Maximum colorant was extracted in aqueous medium, and further it was used for cotton and silk dyeing. The optimum values of the dyeing parameters including dyeing time, dye to liquor ratio and salt level as exhausting agent were found to be 30 min, 35-mL liquor ratio and 3.0 g for cotton and for silk 45 min dyeing time, 45-mL liquor ratio and 3.0 g exhausting agent in aqueous dye extract. Bio mordanting has been applied to attain a variety of color shades. The utilization of 3% of henna, 4% of turmeric for silk pre-mordanting and for post-mordanting turmeric at 3% and henna at 4% for silk gave a darker shade. For cotton bio mordanting, 2% turmeric rhizome powder, 3% henna leaves powder extract as pre-mordant and 2% turmeric, 3% henna as post-mordant has developed a variety of shade. Overall, it has been found that natural colorant from Bougainvillea flowers is the new dye source for bio-coloration of natural fabrics, and addition of bio mordants has made the process more calming and eco-friendly.


Assuntos
Nyctaginaceae , Seda , Corantes , Indústria Têxtil , Pós , Extratos Vegetais , Flores
20.
Curr Drug Deliv ; 20(3): 211-222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35422216

RESUMO

Traditional Chinese medicine (TCM) has a good curative effect, but its disadvantages include complex components, poor drug stability, potential drug interaction, etc. Therefore, it is particularly important to construct a novel drug delivery system that can load Chinese medicine monomers to solve this problem. Silk fibroin is a kind of natural polymer material with unique properties. It can be used as a carrier material to load Chinese medicine monomers to prepare novel drug delivery systems that significantly affect treating diseases without toxic and side effects. However, there is still a lack of a review on silk fibroin as a carrier material to load Chinese medicine monomers to explore and analyze the current research results and progress. Here, our article focuses on the in-depth excavation and analysis of the recent research on novel drug delivery systems prepared by silk fibroin and TCM monomers. Besides, the characteristics, existing problems, and prospects of silk fibroin are discussed and explained. It is hoped that this research can provide a reference and basis for the modernization of TCM, the design of novel drug delivery systems, the research and development of new drugs in the future, and contribute to the innovation of silk protein.


Assuntos
Fibroínas , Medicina Tradicional Chinesa , Sistemas de Liberação de Medicamentos/métodos , Seda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA