RESUMO
BACKGROUND: Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation. METHOD: In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusion-based 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel's biological performances. RESULTS: The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. CONCLUSION: For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation.
Assuntos
Bioimpressão , Cerâmica , Nanopartículas , Engenharia Tecidual/métodos , Sefarose , Alginatos/química , Nanopartículas/química , Hidrogéis/química , Bioimpressão/métodosRESUMO
Organoids can recapitulate human-specific phenotypes and functions in vivo and have great potential for research in development, disease modeling, and drug screening. Due to the inherent variability among organoids, experiments often require a large sample size. Embedding, staining, and imaging each organoid individually require a lot of reagents and time. Hence, there is an urgent need for fast and efficient methods for analyzing the phenotypic changes in organoids in batches. Here, we provide a comprehensive strategy for array embedding, staining, and imaging of cerebral organoids in both agarose sections and in 3D to analyze the spatial distribution of biomarkers in organoids in situ. We constructed several disease models, particularly an aging model, as examples to demonstrate our strategy for the investigation of the phenotypic analysis of organoids. We fabricated an array mold to produce agarose support with microwells, which hold organoids in place for live/dead imaging. We performed staining and imaging of sectioned organoids embedded in agarose and 3D imaging to examine phenotypic changes in organoids using fluorescence micro-optical sectioning tomography (fMOST) and whole-mount immunostaining. Parallel studies of organoids in arrays using the same staining and imaging parameters enabled easy and reliable comparison among different groups. We were able to track all the data points obtained from every organoid in an embedded array. This strategy could help us study the phenotypic changes in organoids in disease models and drug screening.
Assuntos
Organoides , Humanos , Sefarose , Biomarcadores , Avaliação Pré-Clínica de Medicamentos , FenótipoRESUMO
BACKGROUND: Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS: In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS: This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.
Assuntos
Fagopyrum , Fagopyrum/genética , Protoplastos , Sefarose/farmacologia , Peptídeos , Peptídeos e Proteínas de Sinalização IntercelularRESUMO
A combination of polysaccharides and tea polyphenols can enhance immune activity synergistically, depending on the type and structure of polysaccharides, but the mechanism remains unknown. This study is aimed to investigate the regulating effects of different seaweed polysaccharide (ι-carrageenan, agarose) and tea polyphenol blends on intestinal flora and intestinal inflammation using an in vitro ascending-transverse-descending colon fermentation system and RAW264.7 cell model. The results showed that seaweed polysaccharides in the presence of tea polyphenol were almost completely degraded at transverse colon fermentation for 36 h. Agarose significantly enhanced the butyric acid production content by increasing the abundance of Lachnospiraceae, whereas agarose and tea polyphenol blends did not have a synergistic effect. On the contrary, ι-carrageenan and tea polyphenol blends synergistically increased the abundance of beneficial bacteria (e.g., Bacteroidetes and Bifidobacterium) and promoted the production of short-chain fatty acids (SCFAs), such as isobutyric acid. Such changes tended to alter the impacts of different seaweed polysaccharides and tea polyphenol blends on intestinal inflammation. Among them, ι-carrageenan and tea polyphenol blends were the most effective in inhibiting lipopolysaccharide-induced NO, ROS, IL-6, and TNF-α production in RAW264.7 cells, indicating the alleviated intestinal inflammation. The results suggest that the seaweed polysaccharide and tea polyphenol blends have prebiotic potential and can benefit intestinal health.
Assuntos
Microbioma Gastrointestinal , Alga Marinha , Humanos , Alga Marinha/metabolismo , Fermentação , Carragenina , Sefarose , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Chá/química , InflamaçãoRESUMO
Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30-60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
Assuntos
Ablação por Cateter , Neoplasias , Ablação por Radiofrequência , Humanos , Ablação por Cateter/métodos , Fibras Ópticas , Sefarose , FígadoRESUMO
Folate ingestion below and above the physiologic dose has been shown to play a tumorigenic role in certain cancers. Also, excessive folate supplementation after establishment of pre-established lesions led to an advancement in the growth of a few tumors. However, such information has not yet been achieved in the case of HCC. In our study, HepG2 cells were administered with three different concentrations of folic acid i.e. folic acid normal (FN) (2.27 µM), folic acid deficient (FD) (no folic acid), folic acid oversupplementation (FO) (100 µM) for 10 days. Intracellular folate levels were assayed by Elecsys Folate III kit based method. The migratory and invasive abilities were estimated by transwell migration and matrigel invasion methods respectively. FACS was done to evaluate cell viability and apoptosis. Agarose-coated plates were used to access cancer stem cells (CSCs) number. Quantitative RT-PCR and western blotting approaches were used for gene and protein expression of certain tumor suppressor genes (TSGs), respectively. FD cells depicted increased migration, invasion, apoptosis, necrosis and decreased cell viability, CSCs. On the other hand, FO cells showed increased migration, invasion, cell viability and number of CSCs and decreased apoptosis and necrosis. TSGs revealed diminished expression with both FA modulations with respect to FN cells. Thus, FA deficiency as well as abundance enhanced the HCC progression by adapting different mechanisms.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese , Carcinoma Hepatocelular/genética , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Necrose , SefaroseRESUMO
A fundamental process understanding of an entire downstream process is essential for achieving and maintaining the high-quality standards demanded for biopharmaceutical drugs. A holistic process model based on mechanistic insights could support process development by identifying dependencies between process parameters and critical quality attributes across unit operations to design a holistic control strategy. In this study, state-of-the-art mechanistic models were calibrated and validated as digital representations of a biopharmaceutical manufacturing process. The polishing ion exchange chromatography steps (Q Sepharose FF, Poros 50 HS) were described by a transport-dispersive model combined with a colloidal particle adsorption model. The elution behavior of four size variants was analyzed and included in the model. Titration curves of pH adjustments were simulated using a mean-field approach considering interactions between the protein of interest and other ions in solution. By including adjustment steps the important process control inputs ionic strength, dilution, and pH were integrated. The final process model was capable to predict online and offline data at manufacturing scale. Process variations at manufacturing scale of 94 runs were adequately reproduced by the model. Furthermore, the process robustness against a 20% input variation of concentration, size variant and ion composition, volume, and pH could be confirmed with the model. The presented model demonstrates the potential of the integrated approach for predicting manufacturing process performance across scales and operating units.
Assuntos
Produtos Biológicos , Adsorção , Cromatografia por Troca Iônica/métodos , Proteínas , SefaroseRESUMO
2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products.
Assuntos
Rodófitas , Alga Marinha , Galactose/química , Pectinas , Rodófitas/química , Alga Marinha/química , Sefarose/químicaRESUMO
Polyphenol oxidase (PPO) was firstly purified from damson plum as a high antioxidant source. PPO was treated by 0-80% ammonium sulfate precipitation and dialysis. Characterization results were determined for catechol, 4-methyl catechol, pyrogallol and caffeic acid as 0.05 M/pH: 7.2/25 °C; 0.2 M/pH: 4.5/10 °C; 0.01 M/pH: 6.8/5 °C, and 0.2 M/pH: 8.5/10 °C, respectively. Vmax and KM values were calculated for same substrates as 17,219.97 U/(mL*min) and 11.67 mM; 7309.72 U/(mL*min) and 5 mM; 12,580.12 U/(mL*min) and 3.74 mM; 12,100.41 U/(mL*min) and 6.25 mM, respectively. Catechol gave the highest Vmax value among substrates. Affinity purification was performed by using Sepharose 4B-L-Tyrosine-p-aminobenzoic acid and Sepharose 6B-L-Tyrosine-p-aminobenzoic acid. Single bands were approximately observed at 50 kDa for each affinity sample in SDS-PAGE and Native-PAGE. 93.88 and 10.46 purification-folds were obtained for PPO by reference Sepharose-4B and original Sepharose-6B gels. Metal effects upon PPO activity were also investigated due to the importance of enzymatic browning in foods. Cu+2 activation and Fe+2 inhibition were observed with a final metal concentration of 1 mM at 219.66 and 43.18%, respectively. PPO purification from damson plum by affinity chromatography, its characterization, stability evaluation by statistically, and effects of metal ions on damson plum PPO have not been investigated in the literature.
Assuntos
Catecol Oxidase , Prunus domestica , Ácido 4-Aminobenzoico , Sulfato de Amônio , Antioxidantes , Catecol Oxidase/metabolismo , Catecóis , Cromatografia de Afinidade , Géis , Guaiacol , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Prunus domestica/metabolismo , Pirogalol , Diálise Renal , Sefarose , Especificidade por Substrato , TirosinaRESUMO
Selenium (Se) is an essential trace element for human beings and animals. Traditional plant Se enrichment technology suffers from selenium pollution. Herein, environmentally friendly Se-agarose (Se-Agar) hybrid hydrogels are prepared by simply mixing agar with different Se species including selenocarrageenan (SeCA), selenite and Se yeast under heating and stirring for 0.5 h without any other reagent. Such Se-Agar hybrid hydrogels with excellent biocompatibility were used as natural substrates for the cultivation of Se-enriched mung bean sprouts. Compared with Se yeast, SeCA and selenite show a better Se enrichment effect on mung bean sprouts. Furthermore, the growth indices including plant weight and plant height of mung bean sprouts were investigated with different concentrations and sources of Se. Notably, the Se-Agar hybrid hydrogels could be easily regenerated and reused for multiple cycles. The results indicated that Se-Agar hybrid hydrogels as recyclable natural substrates offer a simple, sustainable and affordable strategy for plant Se enrichment.
Assuntos
Hidrogéis/química , Desenvolvimento Vegetal , Selênio/química , Sefarose/química , Vigna/crescimento & desenvolvimento , Biomassa , Humanos , Estrutura MolecularRESUMO
Smart hydrogels responsive to minimally invasive near-infrared (NIR) light have great potential in localized drug delivery for cancer treatment, but they still show some limitations such as low photothermal conversion, poor photothermal stability, and improper temperature range in biomedical applications. In this paper, the two-dimensional MXene nanosheets with high photothermal conversion efficiency as well as photothermal stability was firstly prepared, then the MXene nanosheets and the therapeutic drug were embedded in the low-melting-point agarose hydrogel network to fabricate the drug-loaded MXene/agarose hydrogel (MXene@Hydrogel). With the addition of low concentration of MXene (20 ppm), the MXene@Hydrogel could quickly rise to 60 °C under NIR irradiation and melt to release the encapsulated drugs. Importantly, the drug on/off release and the kinetics could be easily controlled with varied agarose concentration, MXene concentration, light intensity, and exposure time. In addition, the drug doxorubicin retained the anticancer activity after released from the MXene@Hydrogel network under NIR irradiation. With the excellent biocompatibility, the newly fabricated NIR-responsive MXene@Hydrogel offers a novel way for the development of smart hydrogel-based drug delivery system for localized cancer treatment.
Assuntos
Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Hidrogéis/química , Hipertermia Induzida , Nanoestruturas/química , Fototerapia , Sefarose/química , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Melanoma Experimental/patologia , Camundongos , Nanoestruturas/ultraestruturaRESUMO
Hypoxia in local tumors leads to the failure or resistance of radiotherapy (RT) and high-dose RT will cause systemic reactions and local radiation damage. As a non-chemotherapeutic intervention, photothermal therapy (PTT) can remove tumor tissues through thermal ablation as well as effectively improve the microenvironment of hypoxic cells. Therefore, the combined use of PTT and RT (thermoradiotherapy) has urgently become an efficient treatment. In this work, by encapsulating prussian blue (PB) nanoparticles in agarose hydrogel, we developed an injectable hybrid light-controlled hydrogel system as a PB reservoir and release controller (PRC) which can realize single injection and multiple treatments in vivo. Under the irradiation of 808â¯nm near-infrared (NIR) laser, PB nanoparticles convert laser energy into heat energy, causing degradation of agarose hydrogel and the release of PB nanoparticles. Due to the excellent photothermal properties of PB, photothermal treatment in the NIR Biological Windows can greatly enhance the sensitivity of tumor cells to RT. Meanwhile, PB nanoparticles can also be a nanozyme to drive the decomposition of endogenous hydrogen peroxide (H2O2), and then generate oxygen (O2) to improve the tumor hypoxic microenvironment, achieving the further enhancement of the radiation sensitivity. Notably, this study is the first design to utilize hydrogel for thermoradiotherapy. Both in vitro and in vivo experiments, the PRC demonstrated excellent effects of PTT-RT, good stability and biocompatibility, indicating our nanoplatform promote the development of anti-cancer combination thermoradiotherapy with greater clinical significance.
Assuntos
Hidrogéis , Nanopartículas , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Hipóxia , Oxigênio , Fototerapia , SefaroseRESUMO
Here, we present a novel in vitro maturation (IVM) system comprising an agarose matrix supplemented with extracellular matrix (ECM) proteins for enhanced maturation of immature oocytes within cumulus-oocyte complexes (COCs) derived from porcine medium antral follicles (MAFs). Immunocytochemical analyses of integrin subunit α2 , α5 , α6 , ß1 , and ß4 expression suggested that integrin α2 ß1 , α5 ß1 , α6 ß1 , and α6 ß4 play pivotal roles in IVM of porcine immature oocytes. Combinatorial supplementation of fibronectin interacting with integrin α5 ß1 , collagen interacting with integrin α2 ß1 , and laminin interacting with integrin α6 ß1 and α6 ß4 to the agarose matrix had no significant effect on nuclear maturation. However, the number of parthenogenetic embryos that developed into blastocysts increased when oocytes were matured using agarose IVM matrices supplemented with fibronectin, collagen, or laminin. Furthermore, significant increases in cytoplasmic maturation-related parameters (BMP15 level, cumulus cell expansion score, intra-oocyte ATP level, and index of cortical granule distribution) were observed in COCs matured in vitro using ECM protein-incorporated agarose matrices. Our data suggest that mature porcine oocytes with enhanced developmental competence and high-quality cytoplasm can be generated via IVM using agarose matrices supplemented with fibronectin, collagen, or laminin.
Assuntos
Citoplasma/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Oócitos/citologia , Sefarose/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Proteína Morfogenética Óssea 15 , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Citoplasma/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Integrinas/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Partenogênese/efeitos dos fármacos , Subunidades Proteicas/metabolismo , SuínosRESUMO
Marine polysaccharides or oligosaccharides have potential to promote wound healing due to their biocompatibility and physicochemical properties. However, microbial infection delays wound healing process, and novel antimicrobial wound dressings are urgently needed. Here, agarose oligosaccharides (AGO) obtained from marine red algae were used as a reducing and stabilizer for green synthesis of silver nanoparticles (AgNPs), and further successfully connected with odorranain A (OA), one of antimicrobial peptides (AMPs), to obtain a novel composite nanomaterial (AGO-AgNPs-OA). Transmission electron microscopy (TEM) and Malvern particle size analyzer showed that AGO-AgNPs-OA was spherical or elliptic with average size of about 100 nm. Circular dichroism (CD) spectroscopy showed that AGO-AgNPs stabilized the α-helical structure of OA. AGO-AgNPs-OA showed stronger anti-bacterial activities than AGO-AgNPs, and had good biocompatibility and significant promoting effect on wound healing. Our data suggest that AMPs conjugated marine oligosaccharides and AgNPs may be effective and safe antibacterial materials for wound therapy.
Assuntos
Antibacterianos/uso terapêutico , Antifúngicos/uso terapêutico , Bandagens , Nanopartículas Metálicas/uso terapêutico , Sefarose/química , Cicatrização/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Antifúngicos/química , Antifúngicos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/toxicidade , Ratos Sprague-Dawley , Rodófitas/química , Sefarose/síntese química , Sefarose/toxicidade , Prata/química , Prata/uso terapêutico , Prata/toxicidade , Pele/efeitos dos fármacosRESUMO
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
Assuntos
Nanocompostos , Polissacarídeos/química , Impressão Tridimensional/tendências , Medicina Regenerativa/tendências , Engenharia Tecidual/tendências , Alginatos/química , Animais , Carragenina/química , Celulose/química , Difusão de Inovações , Previsões , Humanos , Pectinas/química , Sefarose/químicaRESUMO
Self-regulating temperature-controlled nanoparticles such as Mn-Zn ferrite nanoparticles based magnetic fluid can be a better choice for magnetic fluid hyperthermia because of its controlled regulation of hyperthermia temperature window of 43-45 °C. To test this hypothesis magnetic fluid with said properties was synthesized, and its effect on cervical and breast cancer cell death was studied. We found that the hyperthermia window of 43-45 °C was maintained for one hour at the smallest possible concentration of 0.35 mg/mL without altering the magnetic field applicator parameters. Their hyperthermic effect on HeLa and MCF7 was investigated at the magnetic field of 15.3 kA/m and frequency 330 kHz, which is close to the upper safety limit of 5 * 109 A/m s. We have tested the cytotoxicity of synthesized Mn-Zn ferrite fluid using MTT assay and the results were validated by trypan blue dye exclusion assay that provides the naked eye microscopic view of actual cell death. Since cancer cells tend to resist treatment and show re-growth, we also looked into the effect of multiple sessions hyperthermia using a 24 h window till 72 h using trypan blue assay. The multiple sessions of hyperthermia showed promising results, and it indicated that a minimum of 3 sessions, each of one-hour duration, is required for the complete killing of cancer cells. Moreover, to simulate an in vivo cellular environment, a phantom consisting of magnetic nanoparticles dispersed in 1 and 5% agarose gel was constituted and studied. These results will help to decide the magnetic fluid based hyperthermic therapeutic strategies using temperature-sensitive magnetic fluid.
Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Neoplasias do Colo do Útero/terapia , Neoplasias da Mama/patologia , Morte Celular , Sobrevivência Celular , Meios de Cultura , Feminino , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Células HeLa , Temperatura Alta/uso terapêutico , Humanos , Técnicas In Vitro , Células MCF-7 , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Compostos de Manganês/administração & dosagem , Compostos de Manganês/química , Imagens de Fantasmas , Sefarose , Neoplasias do Colo do Útero/patologia , Compostos de Zinco/administração & dosagem , Compostos de Zinco/químicaRESUMO
Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process.
Assuntos
Antioxidantes/farmacologia , Bryopsida/química , Carragenina/química , Fibroblastos/citologia , Extratos Vegetais/farmacologia , Sefarose/química , Animais , Antioxidantes/química , Bandagens , Fenômenos Biomecânicos , Sobrevivência Celular , Elasticidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Metilgalactosídeos , Camundongos , Células NIH 3T3 , Extratos Vegetais/químicaRESUMO
The Galanthus nivalis lectin, abbreviated as GNA, is the model protein for a large group of mannose-binding lectins. Here, we describe the purification of GNA starting from dry bulbs. Using a combination of ion exchange chromatography and affinity chromatography on mannose-Sepharose, a highly pure preparation of GNA can be obtained.
Assuntos
Galanthus/metabolismo , Lectinas de Ligação a Manose/isolamento & purificação , Lectinas de Plantas/isolamento & purificação , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Manose/química , Raízes de Plantas/metabolismo , Sefarose/químicaRESUMO
Polysaccharide-based hydrogels (PSBHs) have received significant attention for numerous bio-applications due to their biocompatibility and non-immunogenic performance. However, the construction of PSBH with superior mechanical properties by a simple method is rarely adequately researched. This study focuses on the construction of a novel PSBH with superior mechanical and recoverable properties by integrating the synergistic and complementary interactions of covalent bond-associated oxidized sodium alginate (SA-CHO) gel and hydrogen bond-associated agarose (Aga) gel. With the synergy and complementarity of the SA-CHO and Aga networks, the hydrogel exhibited 17 and 15 times (20 and 9 times) greater compressive stress and modulus, respectively, compared with the SA-CHO gel (Aga gel). The hydrogel also displayed excellent fatigue resistance, recurrent shapeability, acid resistance and recovery ability, as well as self-healing ability. This study provides a unique perspective for enhancing the mechanical properties of PSBH through the synergy and complementarity of different kinds of polysaccharides without sacrificing the functionality of the PSBH.
Assuntos
Alginatos/química , Hidrogéis/química , Polissacarídeos/química , Sefarose/química , Estresse Mecânico , Células Cultivadas , Humanos , Teste de MateriaisRESUMO
Ricin, a plant-derived toxin extracted from the seeds of Ricinus communis (castor bean plant), is one of the most toxic proteins known. Ricin's high toxicity, widespread availability, and ease of its extraction make it a potential agent for bioterrorist attacks. Most ricin detection methods are based on immunoassays. These methods may suffer from low efficiency in matrices containing interfering substances, or from false positive results due to antibody cross reactivity, with highly homologous proteins. In this study, we have developed a simple, rapid, sensitive, and selective mass spectrometry assay, for the identification of ricin in complex environmental samples. This assay involves three main stages: (a) Ricin affinity capture by commercial lactamyl-agarose (LA) beads. (b) Tryptic digestion. (c) LC-MS/MS (MRM) analysis of tryptic fragments. The assay was validated using 60 diverse environmental samples such as soil, asphalt, and vegetation, taken from various geographic regions. The assay's selectivity was established in the presence of high concentrations of competing lectin interferences. Based on our findings, we have defined strict criteria for unambiguous identification of ricin. Our novel method, which combines affinity capture beads followed by MRM-based analysis, enabled the identification of 1 ppb ricin spiked into complex environmental matrices. This methodology has the potential to be extended for the identification of ricin in body fluids from individuals exposed (deliberately or accidentally) to the toxin, contaminated food or for the detection of the entire family of RIP-II toxins, by applying multiplex format.