Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.723
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(1): e20230745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597492

RESUMO

Phenoselenazines are nitrogen and selenium-based heterocyclic compounds that have important biological activities. However, their preparation methods are scarce and difficult to handle. The synthesis of a phenoselenazine from a simple and robust CuO nanoparticle catalyzed methodology, using bis-aniline-diselenide and 1,2-dihalobenzenes under microwave irradiation. Also, the double-cross-coupling reaction mechanism for C-Se and C-N bond formation, including the observation of a reaction intermediate by mass spectrometry have been studied.


Assuntos
Selênio , Nitrogênio/química
2.
Plant Cell Rep ; 43(4): 113, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573519

RESUMO

KEY MESSAGE: Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Selênio/farmacologia , Cádmio/toxicidade , Solo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38575248

RESUMO

Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.


Assuntos
Bertholletia , Diabetes Mellitus Tipo 2 , Selênio , Humanos , Bertholletia/química , Selênio/farmacologia , Sobrepeso , Diabetes Mellitus Tipo 2/genética , Mucosa Bucal , Lipídeos , Dano ao DNA , Instabilidade Genômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38613167

RESUMO

The study aimed to explore the association between five heavy metals exposure (Cadmium, Lead, Mercury, Manganese, and Selenium) and mortality [all-cause, cardiovascular disease (CVD), and cancer-related]. We integrated the data into the National Health and Nutrition Examination Survey from 2011 to 2018 years. A total of 16,092 participants were recruited. The link between heavy metals exposure and mortality was analyzed by constructing a restricted cubic spline (RCS) curve, Cox proportional hazard regression model, and subgroup analysis. The RCS curve was used to show a positive linear relationship between Cadmium, Lead, and all-cause mortality. In contrast, there was a negative linear correlation between Mercury and all-cause mortality. Additionally, Manganese and Selenium also had a J-shaped and L-shaped link with all-cause mortality. The positive linear, positive linear, negative liner, J-shaped, and L-shaped relationships were observed for Cadmium, Lead, Mercury, Manganese, and Selenium and CVD mortality, respectively. Cadmium, Lead, Mercury, and Selenium were observed to exhibit positive linear, U-shaped, negative linear, and L-shaped relationships with cancer-related mortality, respectively. There was an increase and then a decrease in the link between Manganese and cancer-related morality. This study revealed the correlation between the content of different elements and different types of mortality in the U.S. general population.


Assuntos
Doenças Cardiovasculares , Mercúrio , Metais Pesados , Neoplasias , Selênio , Humanos , Cádmio/análise , Manganês , Selênio/análise , Causas de Morte , Inquéritos Nutricionais , Estudos de Coortes , Mercúrio/análise
5.
PLoS One ; 19(4): e0301511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564509

RESUMO

This study aimed to identify the biochemical parameters that determine the occurrence of glaucoma and assess the correlation between oxidative stress and clinical data in patients with glaucoma and healthy controls. We enrolled 169 participants; the glaucoma group comprised 104 patients with primary open-angle, pseudoexfoliation, or angle-closure glaucoma, and the control group comprised 65 healthy individuals. Serum concentrations of selenium (Se), copper (Cu), and zinc (Zn); Cu/Zn ratio; and total antioxidant status were measured in both groups. Significantly lower Se and Zn serum levels were observed in men (67.7 ± 17.14 g/L and 0.76 ± 0.11 mg/L, respectively) and women (68.73 ± 16.21 g/L and 0.76 ± 0.13, respectively) with glaucoma. Moreover, significant correlations were identified between serum Se concentration and corrected distance visual acuity (CDVA) and between serum Cu concentration and CDVA (p < 0.005 and p < 0.05, respectively). We also observed a significant positive correlation (r = 0.244, p < 0.05) between pRNFL thickness and BMI and a negative correlation (r = -0.289, p < 0.05) between serum Se concentration and the age of male patients with glaucoma. Additionally, the percentages of participants with below-normal, normal, and above-normal Se, Zn, and total antioxidant capacity serum levels were compared between both groups. Compared with healthy controls, a significantly higher percentage of patients with glaucoma had a below-normal Se serum concentration. A notable negative correlation was observed between Zn and copper serum levels of patients with glaucoma in both sexes. We believe that this study serves as a basis for considering personalized nutritional therapy for the prevention and supportive treatment of patients with glaucoma.


Assuntos
Glaucoma , Selênio , Humanos , Masculino , Feminino , Antioxidantes , Cobre , Zinco , Padrões Dietéticos
7.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589598

RESUMO

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Assuntos
Iodo , Isoindóis , Compostos Organosselênicos , Selênio , Iodo/química , Indicadores e Reagentes , Compostos Organosselênicos/química , Lactonas/química , Carbono
8.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580805

RESUMO

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Assuntos
Arsênio , Metais Pesados , Selênio , Humanos , Chumbo/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Análise de Mediação , Mineralocorticoides , Intoxicação por Metais Pesados , Zinco , Ferro , Íons , China , Metais Pesados/toxicidade
9.
Vet Q ; 44(1): 1-10, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557294

RESUMO

Research on the effects of selenium nanoparticles (Se-NPs), particularly in Japanese quails, is lacking, especially regarding the potential for DNA damage. Therefore, this study aimed to investigate the impact of administering 0.2 and 0.4 mg/kg of Se-NPs on the growth performance, DNA integrity, and histopathological alterations of the liver, lung, kidney, and heart in quails. A total of 480 one-day-old Japanese quails were divided into three experimental groups as follows: Group 1 served as the control and received only basic feed, while Group 2 and 3 received 0.2 mg/kg and 0.4 mg/kg of Se-NPs via oral gavage. Our results suggested that, birds fed with Se-NPs at both levels significantly (p < .01) reduced feed intake, however, weight gain was significantly (p < .01) increased in quails supplemented with 0.2 mg/kg. Similarly, feed conversion ratio (FCR) was significantly (p < .01) reduced in group supplemented with 0.2 mg/kg Se-NPs. White blood cells increased significantly (P0.01) in 0.4 mg/kg while haemoglobin and red cell distribution width decreased (p < .01) in the same group. Both treatment regimens resulted in DNA damage and histopathological alterations; however, the adverse effects were more prominent in the group receiving the higher dose of 0.4 mg/kg. These findings indicate that the lower dose of 0.2 mg/kg may have beneficial effects on growth. However, the higher dose of 0.4 mg/kg not only negatively impacts growth but also leads to histopathological alterations in major organs of the body and DNA damage as well.


Assuntos
Coturnix , Selênio , Animais , Selênio/toxicidade , Suplementos Nutricionais , Aumento de Peso , Dano ao DNA , Ração Animal/análise , Dieta/veterinária
10.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644022

RESUMO

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Solo , Oryza/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Selênio/análise , Selênio/metabolismo , Arsênio/análise , Arsênio/metabolismo , Solo/química , Arsenitos
11.
J Colloid Interface Sci ; 666: 434-446, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608638

RESUMO

Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.


Assuntos
Antibacterianos , Cobre , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Nanoestruturas , Terapia Fototérmica , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Nanoestruturas/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Propriedades de Superfície , Tamanho da Partícula , Selênio/química , Selênio/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico
12.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611698

RESUMO

Acanthopanax senticosus polysaccharide-nano-selenium (ASPS-SENPS) and A. selenopanax selenized polysaccharides (Se-ASPS) were synthesized, and their characterization and biological properties were compared. The acid extraction method was used to extract the polysaccharides of A. selenopanax, followed by decolorization using the hydrogen peroxide method and deproteinization based on the Sevage method, and the purification of A. senticosus polysaccharides (ASPS) was carried out using the cellulose DEAE-52 ion column layer analysis method. An A. senticosus polysaccharide-nano-selenium complex was synthesized by a chemical reduction method using ASPS as dispersants. The selenization of polysaccharides from A. selenopanax was carried out using the HNO3-Na2SeO3 method. The chemical compositions, scanning electron microscopy images, infrared spectra, and antioxidant properties of ASPS-SENPS and Se-ASPS were studied, and they were also subjected to thermogravimetric analysis. The results indicated that the optimal conditions for the synthesis of ASPS-SENPS include the following: when ASPS accounts for 10%, the ratio of ascorbic acid and sodium selenium should be 4:1, the response time should be 4 h, and the reaction temperature should be 50 °C. The most favorable conditions for the synthesis of Se-ASPS were as follows: m (Na2SeO3):m (ASPS) = 4:5, response temperature = 50 °C, and response time = 11.0 h. In the in vitro antioxidant assay, when the mass concentration of Se-ASPS and ASPS-SENPS was 5 mg/mL, the removal rates for DPPH free radicals were 88.44 ± 2.83% and 98.89 ± 3.57%, respectively, and the removal rates for ABTS free radicals were 90.11 ± 3.43% and 98.99 ± 1.73%, respectively, stronger than those for ASPS. The current study compares the physiological and bioactivity effects of ASPS-SENPS and Se-ASPS, providing a basis for future studies on polysaccharides.


Assuntos
Eleutherococcus , Selênio , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Peróxido de Hidrogênio
13.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612965

RESUMO

The lipid accumulation product (LAP) is a reliable marker of metabolic syndrome, which includes conditions like obesity. However, the correlation between the circulating selenium (CSe) concentration and the LAP is currently unclear. This study aimed to ascertain this correlation. Overall, 12,815 adults aged ≥20 years were enrolled in this study. After adjusting for all the confounding variables, CSe was positively correlated to the LAP (ß = 0.41; 95% confidence interval [CI]: 0.28, 0.54; p < 0.001). Compared with the lowest quartile of CSe, the highest quartile of CSe was positively related to the LAP (ß = 0.16; 95% CI: 0.12, 0.21; p < 0.001). Moreover, the correlation between CSe and the LAP revealed a positive non-linear trend. In the subgroup analysis, interaction effects were observed for age, sex, smoking, and stroke (p for interaction < 0.05). The effects were stronger for males (ß = 0.64, 95% CI: 0.47, 0.80; p < 0.001) and individuals who smoke at the time of the trial (ß = 0.64, 95% CI: 0.37, 0.91; p < 0.001). In conclusion, our results indicated that CSe was positively correlated with the LAP in a non-linear manner. Future research is warranted to explore their relationship and better understand the mechanisms underlying this association.


Assuntos
Produto da Acumulação Lipídica , Síndrome Metabólica , Selênio , Adulto , Masculino , Humanos , Estudos Transversais , Síndrome Metabólica/epidemiologia , Obesidade
14.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613007

RESUMO

Selenium is an essential trace element that exists in inorganic forms (selenite and selenates) and organic forms (selenoamino acids, seleno peptides, and selenoproteins). Selenium is known to aid in the function of the immune system for populations where human immunodeficiency virus (HIV) is endemic, as studies suggest that a lack of selenium is associated with a higher risk of mortality among those with HIV. In a recent study conducted in Zambia, adults had a median plasma selenium concentration of 0.27 µmol/L (IQR 0.14-0.43). Concentrations consistent with deficiency (<0.63 µmol/L) were found in 83% of adults. With these results, it can be clearly seen that selenium levels in Southern Africa should be investigated to ensure the good health of both livestock and humans. The recommended selenium dietary requirement of most domesticated livestock is 0.3 mg Se/kg, and in humans above 19 years, anRDA (recommended daily allowance) of 55 mcg Se/per dayisis recommended, but most of the research findings of Southern African countries have recorded low levels. With research findings showing alarming low levels of selenium in soils, humans, and raw feed materials in Southern Africa, further research will be vital in answering questions on how best to improve the selenium status of Southern African soils and plants for livestock and humans to attain sufficient quantities.


Assuntos
Infecções por HIV , Selênio , Adulto , Humanos , Animais , África Austral , Zâmbia , Gado , Solo
15.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
16.
Sci Rep ; 14(1): 8590, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615144

RESUMO

Hypertension (HPT) is the leading modifiable risk factor for cardiovascular diseases and premature death worldwide. Currently, attention is given to various dietary approaches with a special focus on the role of micronutrient intake in the regulation of blood pressure. This study aims to measure the dietary intake of selected minerals among Malaysian adults and its association with HPT. This cross-sectional study involved 10,031 participants from the Prospective Urban and Rural Epidemiological study conducted in Malaysia. Participants were grouped into HPT if they reported having been diagnosed with high blood pressure [average systolic blood pressure (SBP)/average diastolic blood pressure (DBP) ≥ 140/90 mm Hg]. A validated food frequency questionnaire (FFQ) was used to measure participants' habitual dietary intake. The dietary mineral intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc was measured. The chi-square test was used to assess differences in socio-demographic factors between HPT and non-HPT groups, while the Mann-Whitney U test was used to assess differences in dietary mineral intake between the groups. The participants' average dietary intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, selenium, sodium, and zinc was 591.0 mg/day, 3.8 mg/day, 27.1 mg/day, 32.4 mg/day, 0.4 mg/day, 1431.1 mg/day, 2.3 g/day, 27.1 µg/day, 4526.7 mg/day and 1.5 mg/day, respectively. The intake was significantly lower among those with HPT than those without HPT except for calcium and manganese. Continuous education and intervention should be focused on decreasing sodium intake and increasing potassium, magnesium, manganese, zinc, and calcium intake for the general Malaysian population, particularly for the HPT patients.


Assuntos
Hipertensão , Selênio , Adulto , Humanos , Estudos Transversais , Cálcio , Manganês , Cobre , Magnésio , Estudos Prospectivos , Hipertensão/epidemiologia , Cálcio da Dieta , Ferro , Zinco , Sódio , Fósforo , Potássio
17.
Commun Biol ; 7(1): 432, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594418

RESUMO

Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.


Assuntos
Selênio , Oligoelementos , Masculino , Humanos , Oligoelementos/metabolismo , Estudo de Associação Genômica Ampla , Zinco , Selênio/análise , Manganês
18.
PLoS One ; 19(4): e0297764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598493

RESUMO

The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 µg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 µg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 µg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 µg/ml), while cultures exposed to 200 µg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 µg/ml). Interestingly, exposure to 400 µg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 µg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.


Assuntos
Apocynaceae , Nanopartículas , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
19.
BMC Pediatr ; 24(1): 251, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605385

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCMP) is characterized by the enlargement and weakening of the heart and is a major cause of heart failure in children. Infection and nutritional deficiencies are culprits for DCMP. Zinc is an important nutrient for human health due to its anti-oxidant effect that protects cell against oxidative damage. This case-control study aimed to investigate the relationship between dietary intake of zinc and selenium and the risk of DCMP in pediatric patients. METHODS: A total of 36 DCMP patients and 72 matched controls were recruited, and their dietary intakes were assessed via a validated food frequency questionnaire. We used chi-square and sample T-test for qualitative and quantitative variables, respectively. Logistic regression analysis was applied to assess the relationship between selenium and zinc intake with the risk of DCMP. RESULTS: After fully adjusting for confounding factors, analyses showed that selenium (OR = 0.19, CI = 0.057-0.069, P trend < 0.011) and zinc (OR = 0.12, CI = 0.035-0.046, P trend < 0.002) intake were strongly associated with 81% and 88% lower risk of pediatric DCMP, respectively. CONCLUSIONS: This study highlights the protective role of adequate dietary intake of selenium and zinc in decreasing the risk of DCMP in children. Malnutrition may exacerbate the condition and addressing these micronutrient deficiencies may improve the cardiac function. Further studies are recommended to detect the underlying mechanisms and dietary recommendations for DCMP prevention.


Assuntos
Cardiomiopatia Dilatada , Desnutrição , Selênio , Humanos , Criança , Selênio/análise , Estudos de Casos e Controles , Cardiomiopatia Dilatada/etiologia , Desoxicitidina Monofosfato , Zinco , Desnutrição/complicações
20.
J Plant Physiol ; 296: 154237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583194

RESUMO

Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.


Assuntos
Antioxidantes , Selênio , Animais , Humanos , Antioxidantes/metabolismo , Selênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA