Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0170163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095457

RESUMO

Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.


Assuntos
Cadaverina/metabolismo , Carboxiliases/metabolismo , Dissulfetos/metabolismo , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Fosfato de Piridoxal/metabolismo , Selenomonas/enzimologia , Sítios de Ligação , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Dissulfetos/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
2.
PLoS One ; 11(11): e0166667, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861532

RESUMO

Lysine decarboxylase (LDC) is a crucial enzyme for acid stress resistance and is also utilized for the biosynthesis of cadaverine, a promising building block for bio-based polyamides. We determined the crystal structure of LDC from Selenomonas ruminantium (SrLDC). SrLDC functions as a dimer and each monomer consists of two distinct domains; a PLP-binding barrel domain and a sheet domain. We also determined the structure of SrLDC in complex with PLP and cadaverine and elucidated the binding mode of cofactor and substrate. Interestingly, compared with the apo-form of SrLDC, the SrLDC in complex with PLP and cadaverine showed a remarkable structural change at the PLP binding site. The PLP binding site of SrLDC contains the highly flexible loops with high b-factors and showed an open-closed conformational change upon the binding of PLP. In fact, SrLDC showed no LDC activity without PLP supplement, and we suggest that highly flexible PLP binding site results in low PLP affinity of SrLDC. In addition, other structurally homologous enzymes also contain the flexible PLP binding site, which indicates that high flexibility at the PLP binding site and low PLP affinity seems to be a common feature of these enzyme family.


Assuntos
Carboxiliases/química , Modelos Moleculares , Conformação Molecular , Fosfato de Piridoxal/química , Selenomonas/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/metabolismo , Domínio Catalítico , Ativação Enzimática , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato
3.
J Biosci Bioeng ; 118(3): 305-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24686155

RESUMO

A mutant gene of rumen phytase (phyA-7) was cloned into pET23b(+) vector and expressed in the Escherichia coli BL21 under the control of the T7 promoter. The study of fermentation conditions includes the temperature impacts of mutant phytase expression, the effect of carbon supplements over induction stage, the inferences of acetic acid accumulation upon enzyme expression and the comparison of one-stage and two-stage operations in batch mode. The maximum value of phytase activity was reached 107.0 U mL(-1) at induction temperature of 30°C. Yeast extract supplement demonstrated a significant increase on both protein concentration and phytase activity. The acetic acid (2 g L(-1)) presented in the modified synthetic medium demonstrated a significant decrease on expressed phytase activity. A two-stage batch operation enhanced the level of phytase activity from 306 to 1204 U mL(-1) in the 20 L of fermentation scale. An overall 3.7-fold improvement in phytase yield (35,375.72-1,31,617.50 U g(-1) DCW) was achieved in the two-stage operation.


Assuntos
6-Fitase/metabolismo , Ácido Acético/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Selenomonas/química , 6-Fitase/genética , Ácido Acético/farmacologia , Proteínas de Bactérias/genética , Misturas Complexas/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fermentação , Expressão Gênica , Projetos Piloto , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenomonas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA