Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3341-3355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440848

RESUMO

BACKGROUND: Sepsis remains a crucial global health issue characterized by high mortality rates and a lack of specific treatments. This study aimed to elucidate the molecular mechanisms underlying sepsis and to identify potential therapeutic targets and compounds. METHODS: High-throughput sequencing data from the GEO database (GSE26440 as the training set and GSE13904 and GSE32707 as the validation sets), weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, alongside a combination of PPI and machine learning methods (LASSO and SVM) were utilized. RESULTS: WGCNA identified the black module as positively correlated, and the green module as negatively correlated with sepsis. Further intersections of these module genes with age-related genes yielded 57 sepsis-related genes. GO and KEGG pathway enrichment analysis, PPI, LASSO, and SVM selected six hub aging-related genes: BCL6, FOS, ETS1, ETS2, MAPK14, and MYC. A diagnostic model was constructed based on these six core genes, presenting commendable performance in both the training and validation sets. Notably, ETS1 demonstrated significant differential expression between mild and severe sepsis, indicating its potential as a biomarker of severity. Furthermore, immune infiltration analysis of these six core genes revealed their correlation with most immune cells and immune-related pathways. Additionally, compounds were identified in the traditional Chinese medicine Danshen, which upon further analysis, revealed 354 potential target proteins. GO and KEGG enrichment analysis of these targets indicated a primary enrichment in inflammation and immune-related pathways. A Venn diagram intersects these target proteins, and our aforementioned six core genes yielded three common genes, suggesting the potential efficacy of Danshen in sepsis treatment through these genes. CONCLUSIONS: This study highlights the pivotal roles of age-related genes in the molecular mechanisms of sepsis, offers potential biomarkers, and identifies promising therapeutic compounds, laying a robust foundation for future studies on the treatment of sepsis.


Assuntos
Envelhecimento , Biomarcadores , Sepse , Sepse/tratamento farmacológico , Sepse/genética , Humanos , Biomarcadores/metabolismo , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Bases de Dados Genéticas
2.
Adv Biol (Weinh) ; 8(3): e2300542, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38408269

RESUMO

Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.


Assuntos
Citocinas , Diterpenos do Tipo Caurano , Sepse , Camundongos , Animais , Citocinas/genética , Citocinas/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Fígado , Perfilação da Expressão Gênica
3.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6492-6499, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212006

RESUMO

Shenfu Injection(SFI) is praised for the high efficacy in the treatment of septic shock. However, the precise role of SFI in the treatment of sepsis-associated lung injury is not fully understood. This study investigated the protective effect of SFI on sepsis-associated lung injury by a clinical trial and an animal experiment focusing on the hypoxia-inducing factor-1α(HIF-1α)-mediated mitochondrial autophagy. For the clinical trial, 70 patients with sepsis-associated lung injury treated in the emergency intensive care unit of the First Affiliated Hospital of Zhengzhou University were included. The levels of interleukin(IL)-6 and tumor necrosis factor(TNF)-α were measured on days 1 and 5 for every patient. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to determine the mRNA level of hypoxia inducible factor-1α(HIF-1α) in the peripheral blood mononuclear cells(PBMCs). For the animal experiment, 32 SPF-grade male C57BL/6J mice(5-6 weeks old) were randomized into 4 groups: sham group(n=6), SFI+sham group(n=10), SFI+cecal ligation and puncture(CLP) group(n=10), and CLP group(n=6). The body weight, body temperature, wet/dry weight(W/D) ratio of the lung tissue, and the pathological injury score of the lung tissue were recorded for each mouse. RT-qPCR and Western blot were conducted to determine the expression of HIF-1α, mitochondrial DNA(mt-DNA), and autophagy-related proteins in the lung tissue. The results of the clinical trial revealed that the SFI group had lowered levels of inflammatory markers in the blood and alveolar lavage fluid and elevated level of HIF-1α in the PBMCs. The mice in the SFI group showed recovered body temperature and body weight. lowered TNF-α level in the serum, and decreased W/D ratio of the lung tissue. SFI reduced the inflammatory exudation and improved the alveolar integrity in the lung tissue. Moreover, SFI down-regulated the mtDNA expression and up-regulated the protein levels of mitochondrial transcription factor A(mt-TFA), cytochrome c oxidase Ⅳ(COXⅣ), HIF-1α, and autophagy-related proteins in the lung tissue of the model mice. The findings confirmed that SFI could promote mitophagy to improve mitochondrial function by regulating the expression of HIF-1α.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Sepse , Humanos , Masculino , Camundongos , Animais , Leucócitos Mononucleares , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Hipóxia/patologia , Proteínas Relacionadas à Autofagia , Peso Corporal
4.
Artigo em Chinês | WPRIM | ID: wpr-981471

RESUMO

The aim of this study was to investigate the effect and molecular mechanism of Xuebijing Injection in the treatment of sepsis-associated acute respiratory distress syndrome(ARDS) based on network pharmacology and in vitro experiment. The active components of Xuebijing Injection were screened and the targets were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of sepsis-associated ARDS were searched against GeneCards, DisGeNet, OMIM, and TTD. Weishengxin platform was used to map the targets of the main active components in Xuebijing Injection and the targets of sepsis-associated ARDS, and Venn diagram was established to identify the common targets. Cytoscape 3.9.1 was used to build the "drug-active components-common targets-disease" network. The common targets were imported into STRING for the building of the protein-protein interaction(PPI) network, which was then imported into Cytoscape 3.9.1 for visualization. DAVID 6.8 was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the common targets, and then Weishe-ngxin platform was used for visualization of the enrichment results. The top 20 KEGG signaling pathways were selected and imported into Cytoscape 3.9.1 to establish the KEGG network. Finally, molecular docking and in vitro cell experiment were performed to verify the prediction results. A total of 115 active components and 217 targets of Xuebijing Injection and 360 targets of sepsis-associated ARDS were obtained, among which 63 common targets were shared by Xuebijing Injection and the disease. The core targets included interleukin-1 beta(IL-1β), IL-6, albumin(ALB), serine/threonine-protein kinase(AKT1), and vascular endothelial growth factor A(VEGFA). A total of 453 GO terms were annotated, including 361 terms of biological processes(BP), 33 terms of cellular components(CC), and 59 terms of molecular functions(MF). The terms mainly involved cellular response to lipopolysaccharide, negative regulation of apoptotic process, lipopolysaccharide-mediated signaling pathway, positive regulation of transcription from RNA polyme-rase Ⅱ promoter, response to hypoxia, and inflammatory response. The KEGG enrichment revealed 85 pathways. After diseases and generalized pathways were eliminated, hypoxia-inducible factor-1(HIF-1), tumor necrosis factor(TNF), nuclear factor-kappa B(NF-κB), Toll-like receptor, and NOD-like receptor signaling pathways were screened out. Molecular docking showed that the main active components of Xuebijing Injection had good binding activity with the core targets. The in vitro experiment confirmed that Xuebijing Injection suppressed the HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways, inhibited cell apoptosis and reactive oxygen species generation, and down-regulated the expression of TNF-α, IL-1β, and IL-6 in cells. In conclusion, Xuebijing Injection can regulate apoptosis and response to inflammation and oxidative stress by acting on HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways to treat sepsis-associated ARDS.


Assuntos
Humanos , Farmacologia em Rede , Fator A de Crescimento do Endotélio Vascular , NF-kappa B , Interleucina-6 , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Síndrome do Desconforto Respiratório do Recém-Nascido , Fator de Necrose Tumoral alfa , Sepse/genética , Proteínas NLR
5.
Artigo em Chinês | WPRIM | ID: wpr-921682

RESUMO

This study aims to predict the material basis and mechanism of Dachengqi Decoction in the treatment of sepsis based on network pharmacology. The chemical constituents and targets of Dachengqi Decoction were retrieved from TCMSP, UniPot and DrugBank and the targets for the treatment of sepsis from OMIM and GeneCards. The potential targets of Dachengqi Decoction for the treatment of sepsis were screened by OmicShare. STRING database and Cytoscape 3.7.2 were used to construct the Chinese medicinal-active component-target-disease, active component-key target-key pathway, and protein-protein interaction(PPT) networks. The gene ontology(GO) term enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed by DAVID(P<0.05). Finally, the animal experiment was conducted to verify some targets and pathways. A total of 40 active components and 157 targets of the Dachengqi Decoction, 2 407 targets for the treatment of sepsis, and 91 common targets of the prescription and the disease were also obtained. The key targets were prostaglandin G/H synthase 2(PTGS2), prostaglandin G/H synthase 1(PTGS1), protein kinase cAMP-dependent catalytic-α(PRKACA), coagulation factor 2 receptor(F2 R), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic gamma subunit(PIK3 CG), dipeptidyl peptidase 4(DPP4), etc. A total of 533 terms and 125 pathways were obtained for the 91 targets. The main terms were the response to drug, negative regulation of apoptotic process, positive regulation of nitric oxide biosynthetic process and lipopolysaccharide-mediated signaling pathway, and the pathways included pathways in cancer, hepatitis B, and phosphatidylinositol 3-kinase and protein kinase B(PI3 K/Akt) signaling pathway. The animal experiment confirmed that Dachengqi Decoction can down-regulate inflammatory cytokines interleukin-1β(IL-1β), IL-6 and tumor necrosis factor α(TNF-α)(P<0.01). It could also reduce the wet/dry weight ratio of lung tissue, the level of myeloperoxidase(MPO) and the phosphorylation of PI3 K and Akt(P<0.01). These results indicated that Dchengqi Decoction could act on inflammation-related targets and improve sepsis by inhibiting PI3 K/Akt signaling pathway. The animal experiment supported the predictions of network pharmacology. Dachengqi Decoction intervenes sepsis via multiple components, multiple targets, and multiple pathways. The result lays a foundation for further research on the mechanism of Dachengqi Decoction in the treatment of sepsis.


Assuntos
Animais , Medicamentos de Ervas Chinesas , Ontologia Genética , Extratos Vegetais , Sepse/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA