RESUMO
Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.
Assuntos
Afídeos , Ácidos Graxos/metabolismo , Interações entre Hospedeiro e Microrganismos , Serratia/fisiologia , Simbiose , Animais , Afídeos/metabolismo , Afídeos/microbiologiaRESUMO
Plant growth promoting rhizobacteria are known to improve plant performance by developing healthy and productive interactions with the host plants. These associations may be symbiotic or asymbiotic depending upon the genetic potential of the resident microbe and promiscuity of the host. Present study describes the potential of two Serratia spp. strains for promotion of plant growth in homologous as well as non-homologous hosts. The strains KPS-10 and KPS-14; native to potato rhizosphere belong to genus Serratia based on 16S rRNA gene sequences (accession no. LN831934 and LN831937 respectively) and contain multiple plant growth promoting properties along-with the production of quorum sensing acyl homoserine lactone (AHL) molecules. Both Serratia spp. strains showed solubilization of inorganic tri-calcium phosphate while KPS-14 also exhibited phytase activity (1.98 10-10 kcat). KPS-10 showed higher P-solubilization activity (128.5 µg/mL), IAA production (8.84 µg/mL), antifungal activity and also showed the production of two organic acids i.e., gluconic acid and lactic acid. Both strains produced three common AHLs: C6-HSL, 3oxo-C10-HSL, 3oxo-C12-HSL while some strain-specific AHLs (3OH-C5-HSL, 3OH-C6-HSL, C10-HSL specific to KPS-10 and 3OH-C6-HSL, C8-HSL, 3oxo-C9-HSL, 3OH-C9-HSL specific to KPS-14). Strains showed roots and rhizosphere colonization of potato and other non-homologous hosts up to one month. In planta AHLs-detection confirmed a likely role of AHLs during seedling growth and development where both extracted AHLs or bacteria inoculated roots showed extensive root hair. A significant increase in root/shoot lengths, root/ shoot fresh weights, root/shoot dry weights was observed by inoculation in different hosts. PGP-characteristics along with the AHLs-production signify the potential of both strains as candidate for the development of bio-inoculum for potato crop in specific and other crops in general. This inoculum will not only reduce the input of chemical fertilizer to the environment but also improve soil quality and plant growth.
Assuntos
Acil-Butirolactonas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Serratia/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , DNA Bacteriano , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Percepção de Quorum/genética , RNA Ribossômico 16S , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Serratia/genética , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologiaRESUMO
Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.
Assuntos
Arabidopsis/microbiologia , Nematoides/microbiologia , Serratia/fisiologia , Animais , Antibiose , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Pinus/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Percepção de Quorum , Serratia/enzimologia , Serratia/genética , Serratia/isolamento & purificação , Vigna/crescimento & desenvolvimento , Vigna/microbiologiaRESUMO
A mutant with a transposon insertion just upstream of the lysophosphatidic acid acyltansferase gene plsC was isolated in a screen for mutants affected in growth at low temperature of the psychrotroph Serratia plymuthica RVH1. This mutant had lost its ability to grow at 4 °C and was severely affected in growth at 10 °C, but showed only slightly reduced growth at 30 °C. Fatty acid analysis of membrane extracts showed that the ratio of C16:1/C18:1 fatty acids was six-to sevenfold reduced in the mutant, although the ratio of unsaturated to saturated fatty acids was unaffected. The homeoviscous adaptation ability of the mutant was also unaffected. Growth and fatty acid composition were mostly restored by overexpressing plsC on a plasmid. Supplementation of C16:1 (palmitoleic acid) into the growth medium partially rescued low temperature growth, indicating that a balanced ratio of the two main unsaturated fatty acids is required for psychrotrophy. The mutant was significantly more strongly inactivated by high pressure treatment at 250 MPa, but not at higher pressures. It also showed reduced growth at low pH, but not at increased NaCl concentrations. This work provides novel information on the role of membrane fatty acid composition in stress tolerance.
Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Serratia/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Temperatura Baixa , Meios de Cultura , Elementos de DNA Transponíveis , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Mutagênese Insercional , Mutação , Pressão , Serratia/enzimologia , Serratia/genética , Serratia/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Estresse FisiológicoRESUMO
Rhizoctonia solani causes yield losses in numerous economically important European crops. To develop a biocontrol strategy, 3 potato-associated ecto- and endophytically living bacterial strains Pseudomonas fluorescens B1, Pseudomonas fluorescens B2, and Serratia plymuthica B4 were evaluated against R. solani in potato and in lettuce. The disease-suppression effect of the 3 biocontrol agents (BCAs) was tested in a growth chamber and in the field. In growth chamber experiments, all 3 BCAs completely or significantly limited the dry mass (DM) losses on lettuce and the disease severity (DS) caused by R. solani on potato sprouts. Strain B1 showed the highest suppression effect (52% on average) on potato. Under field conditions, the DS on both crops, which were bacterized, decreased significantly, and the biomass losses on lettuce decreased significantly as well. The greatest disease-suppression effect on potato was achieved by strain B1 (37%), followed by B2 (33%) and then B4 (31%), whereas the marketable tuber yield increased up to 12% (B1), 6% (B2), and 17% (B4) compared with the pathogen control at higher disease pressure. Furthermore, in all experiments, B1 proved to be the most effective BCA against R. solani. Therefore, this BCA could be a candidate for developing a commercial product against Rhizoctonia diseases. To our knowledge, this is the first report on the high potential of endophytes to be used as a biological control agent against R. solani under field conditions.
Assuntos
Antibiose , Lactuca/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/imunologia , Rhizoctonia/imunologia , Serratia/fisiologia , Solanum tuberosum/microbiologia , Agricultura/métodos , Lactuca/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimentoRESUMO
The human pathogen Pseudomonas aeruginosa uses N-butyryl-L-homoserine lactone (BHL) and N-(3-oxododecanyl)-L-homoserine lactone (OdDHL) as small molecule intercellular signals in a phenomenon known as quorum sensing (QS). QS modulators are effective at attenuating P. aeruginosa virulence; therefore, they are a potential new class of antibacterial agent. The lactone in BHL and OdDHL is hydrolysed under physiological conditions. The hydrolysis proceeds at a rate faster than racemisation of the alpha-chiral centre. Non-hydrolysable, non-racemic analogues (small molecule probes) were designed and synthesised, replacing the lactone with a ketone. OdDHL analogues were found to be relatively unstable to decomposition unless they were difluorinated between the beta-keto amide. Stability studies on a non-hydrolysable, cyclohexanone analogue indicated that racemisation of the alpha-chiral centre was relatively slow. This analogue was assayed to show that the L-isomer is likely to be responsible for the QS autoinducing activity in P. aeruginosa and Serratia strain ATCC39006.
Assuntos
Bioquímica/métodos , Sondas Moleculares/química , Pseudomonas aeruginosa/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Cicloexanonas/química , Avaliação Pré-Clínica de Medicamentos/métodos , Flúor/química , Homosserina/análogos & derivados , Homosserina/química , Hidrólise , Isomerismo , Cetonas/química , Sondas Moleculares/síntese química , Sondas Moleculares/metabolismo , Pseudomonas aeruginosa/patogenicidade , Serratia/fisiologia , Relação Estrutura-AtividadeRESUMO
The unexplained occurrence of anoxic phosphorus (P) accumulation has largely hampered modeling of nitrification denitrification biological excess P removal (NDBEPR) systems. The aim of this study was, therefore, to isolate and identify denitrifying-P accumulating heterotrophic bacteria (DPBs) from a NDBEPR system in order to evaluate anoxic P accumulation and the specific mechanisms involved. Results of the study showed various heterotrophic bacteria to be capable of anoxic P accumulation utilising nitrate (NO3) as electron acceptor. While Pseudomonas spp. predominated, Serratia spp. and Vibrio spp. demonstrated the most efficient anoxic P accumulation with 7.10 and 7.29 mgPO4-P/L removal, respectively, at an initial NO3 concentration of 13.54 mgNO3-N/L and P concentration of 16.34 mgPO4-P/L. Weaker DPBs were also identified which were only capable of accumulating small amounts of P at low initial P and NO3 concentrations due to weak denitrification capacity. Anoxic P release was also observed due to the presence of acetate.