Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Appl Environ Microbiol ; 89(7): e0086823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367298

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that grows by respiration using a variety of electron acceptors. This organism serves as a model to study how bacteria thrive in redox-stratified environments. A glucose-utilizing engineered derivative of MR-1 has been reported to be unable to grow in glucose minimal medium (GMM) in the absence of electron acceptors, despite this strain having a complete set of genes for reconstructing glucose to lactate fermentative pathways. To gain insights into why MR-1 is incapable of fermentative growth, this study examined a hypothesis that this strain is programmed to repress the expression of some carbon metabolic genes in the absence of electron acceptors. Comparative transcriptomic analyses of the MR-1 derivative were conducted in the presence and absence of fumarate as an electron acceptor, and these found that the expression of many genes involved in carbon metabolism required for cell growth, including several tricarboxylic acid (TCA) cycle genes, was significantly downregulated in the absence of fumarate. This finding suggests a possibility that MR-1 is unable to grow fermentatively on glucose in minimal media owing to the shortage of nutrients essential for cell growth, such as amino acids. This idea was demonstrated in subsequent experiments that showed that the MR-1 derivative fermentatively grows in GMM containing tryptone or a defined mixture of amino acids. We suggest that gene regulatory circuits in MR-1 are tuned to minimize energy consumption under electron acceptor-depleted conditions, and that this results in defective fermentative growth in minimal media. IMPORTANCE It is an enigma why S. oneidensis MR-1 is incapable of fermentative growth despite having complete sets of genes for reconstructing fermentative pathways. Understanding the molecular mechanisms behind this defect will facilitate the development of novel fermentation technologies for the production of value-added chemicals from biomass feedstocks, such as electro-fermentation. The information provided in this study will also improve our understanding of the ecological strategies of bacteria living in redox-stratified environments.


Assuntos
Aminoácidos , Shewanella , Fermentação , Aminoácidos/metabolismo , Shewanella/metabolismo , Glucose/metabolismo , Fumaratos/metabolismo , Suplementos Nutricionais
2.
Environ Sci Pollut Res Int ; 30(3): 6705-6715, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36006536

RESUMO

Melanin is a biopolymer with versatile structural and functional properties and diverse applications in recovering toxic chemicals from water and wastewater, biomedical imaging, and as theragnostic agent. We report the structural characterization and biosynthetic pathway of an extracellular pyomelanin secreted by a sponge-associated bacterium, Shewanella sp. (Shewanella-melanin), and their potential application in metal recovery from liquid. Pyomelanin particles of > 50 µm size were found in the culture medium within 48 h of growth, which were formed through the self-polymerization of benzoquinone molecule produced through homogentisic acid pathway. The aspC and hppD genes involved in the biosynthetic pathway of pyomelanin were detected in the whole genome sequence of Shewanella sp. The FT-IR spectra of Shewanella-melanin, at ~ 3300-3420 cm-1 corresponding to the stretching vibration of -NH and -OH, was in good agreement with that of Sepia melanin, while its elemental composition (C/N/H/S of 29.2:8.23:6.41:1.58) was unique. Shewanella-melanin showed ~ 300 and ~ 950 times increased chelation of manganese and iron from a liquid medium supplemented with 2 mM of MnSO4 and FeSO4, respectively, compared to a control. The FT-IR spectrum showed the binding of metal ions to the carboxylic acid, hydroxyl, and amine groups of Shewanella-melanin. The Shewanella-melanin, with its excellent metal biosorption, could be a potential candidate for removing toxic compounds from water, in turn contributing to the fulfillment of sustainable development goal (SDG) 6.


Assuntos
Melaninas , Shewanella , Melaninas/química , Melaninas/metabolismo , Shewanella/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/metabolismo
3.
Sci Total Environ ; 840: 156577, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35688243

RESUMO

Fe(III) may be reasonably considered as one of the most important electron acceptors in petroleum reservoir ecosystems. The microbial mineralization of clay minerals, especially montmorillonite, is also of great significance to the exploration of petroleum and gas reservoirs. The bioreduction mechanisms of iron-poor minerals in petroleum reservoirs have been poorly investigated. This study investigated the bioreduction of montmorillonite by dissimilatory iron-reducing bacteria (DIRB) in petroleum reservoirs based on culture-independent and culture-dependent methods. Microbial diversity analysis revealed that Halolactibacillus, Bacillus, Alkaliphilus, Shewanella, Clostridium, and Pseudomonas were the key genera involved in the bioreduction of Fe(III). Through the traditional culture-dependent method, most of the key genera were isolated from the samples collected from petroleum reservoirs. Traditional culture-dependent methods can be used to reveal the metabolic characteristics of microorganisms (such as iron-reduction efficiency) to further elucidate the roles of different species (B. subtilis and B. alkalitelluris) in the environment. Moreover, many species with high iron-reduction efficiencies and relatively low abundances in the samples, such as Tessaracoccus and Flaviflexus, were isolated from petroleum reservoirs for the first time. The combination of culture-dependent and culture-independent methods can be used to further the understanding of the microbial communities and the metabolic characteristics of DIRB in petroleum reservoirs. Structural alterations that occurred during the interactions of microorganisms and montmorillonite were revealed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The physical and chemical analysis results demonstrated that microorganisms from petroleum reservoirs can dissolve iron-poor montmorillonite and promote the release of interlayer water. The secondary minerals illite and clinoptilolite were observed in bioreduced smectite. The formation of secondary minerals was closely related to the dissolution degrees of minerals based on iron reduction.


Assuntos
Petróleo , Shewanella , Bentonita , Argila , Ecossistema , Compostos Férricos/química , Ferro/química , Minerais/metabolismo , Campos de Petróleo e Gás , Oxirredução , Petróleo/metabolismo , Shewanella/metabolismo
4.
Chemosphere ; 305: 135510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772516

RESUMO

Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.


Assuntos
Shewanella , Óxido de Zinco , Anaerobiose , Biodegradação Ambiental , Shewanella/metabolismo , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
5.
Environ Pollut ; 306: 119451, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569621

RESUMO

Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)0, and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)0 biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.


Assuntos
Arsênio , Compostos de Selênio , Selênio , Shewanella , Arseniatos/metabolismo , Arsênio/metabolismo , Biomineralização , Cinética , Ácido Selênico , Ácido Selenioso , Selênio/metabolismo , Shewanella/metabolismo
6.
Appl Biochem Biotechnol ; 194(4): 1755-1774, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34982373

RESUMO

Biosurfactants are microbial-derived compounds with surface and emulsifying activities. Environmental and industrial applications make glycolipid biosurfactants particularly interesting among the several categories of biosurfactants. A potential glycolipid biosurfactant resource, Shewanella algae, was isolated from marine samples at the Persian Gulf. The glycolipid biosurfactant caused a reduction in water surface tension from 72 to 43 mN/m with a 0.25 mg/mL critical micelle concentration (CMC). Two-level factorial design was then applied for optimization of biosurfactant production, where a maximal reduction of culture broth surface tension (31 mN/m) acquired in the presence of crude oil (0.5%, v/v), NaNO3 (0.2 g/L), NH4Cl (0.7 g/L), and peptone (0.5 g/L). GC-MS analysis of the culture broth showed when crude oil was used as the sole carbon source, S. algae was able to degrade most of its alkane components. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy revealed the glycolipid structure of biosurfactant. The glycolipid biosurfactant exhibited considerable growth inhibition of clinical bacterial pathogens and disrupted the preformed biofilms of Bacillus cereus (83%), Streptococcus pneumoniae (53%), Pseudomonas aeruginosa (92%), Escherichia coli (64%), Klebsiella pneumoniae (87%), and Acinetobacter sp. (72%). In conclusion, the glycolipid biosurfactant secreted by S. algae exhibited a wide range of functional properties and was evidenced as a promising candidate for biomedical application.


Assuntos
Anti-Infecciosos , Petróleo , Shewanella , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Glicolipídeos/química , Glicolipídeos/farmacologia , Shewanella/metabolismo , Tensoativos/química
7.
Arch Microbiol ; 202(10): 2711-2726, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32728830

RESUMO

In recent years, bioremediation is considered as an efficient method to remove the pollutants from the industrial wastewater. In this study, quantitative gene expressions (Real-time RT-PCR) of mtr gene cluster (mtrA, mtrB, mtrC, mtrD, mtrE, mtrF and omcA) in five different uranium concentrations (0.1, 0.25, 0.5, 1 and 2 mM) were performed with ICP and microscopic live cell counting analysis under anaerobic condition, by Shewanella RCRI7 as a native bacterium. The results indicated that the amount of uranium removal and live-cell counting were decreased in the higher uranium concentrations (1 and 2 mM), due to the uranium toxicity, suggesting 0.5 mM as the optimum uranium concentration for Shewanella RCRI7 resistance. The expression of mtrCED and omcA genes presented increasing trend in the lower uranium concentrations (0.1, 0.25 and 0.5 mM) and a decreasing trend in 1 and 2 mM, while mtrABF, presented an inverse pattern, proving the alternative role of mtrF for mtrC and omcA, as the substantial multiheme cytochromes in Extracellular Electron Transfer (EET) pathway. These data are a proof of these gene vital roles in the EET pathway, proposing them for genetic engineering toward EET optimization, as the certain pathway in heavy metal bioremediation process.


Assuntos
Biodegradação Ambiental , Proteínas de Membrana Transportadoras/genética , Shewanella/genética , Shewanella/metabolismo , Urânio/análise , Poluentes Químicos da Água/análise , Proteínas da Membrana Bacteriana Externa/genética , Grupo dos Citocromos c/genética , Transporte de Elétrons/genética , Família Multigênica/genética , Oxirredução , Águas Residuárias/química , Poluição da Água/análise
8.
Microbes Environ ; 35(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147604

RESUMO

To identify exoelectrogens involved in the generation of electricity from complex organic matter in coastal sediment (CS) microbial fuel cells (MFCs), MFCs were inoculated with CS obtained from tidal flats and estuaries in the Tokyo bay and supplemented with starch, peptone, and fish extract as substrates. Power output was dependent on the CS used as inocula and ranged between 100 and 600 mW m-2 (based on the projected area of the anode). Analyses of anode microbiomes using 16S rRNA gene amplicons revealed that the read abundance of some bacteria, including those related to Shewanella algae, positively correlated with power outputs from MFCs. Some fermentative bacteria were also detected as major populations in anode microbiomes. A bacterial strain related to S. algae was isolated from MFC using an electrode plate-culture device, and pure-culture experiments demonstrated that this strain exhibited the ability to generate electricity from organic acids, including acetate. These results suggest that acetate-oxidizing S. algae relatives generate electricity from fermentation products in CS-MFCs that decompose complex organic matter.


Assuntos
Acetatos/metabolismo , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Sedimentos Geológicos/microbiologia , Shewanella/metabolismo , Bactérias/classificação , Eletrodos , Fermentação , Microbiota/genética , RNA Ribossômico 16S/genética , Shewanella/genética , Tóquio
9.
Chemosphere ; 246: 125681, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31896014

RESUMO

Tetracycline (TC) as an emerging contaminant has raised serious concerns about its toxicity and removal in wastewater treatment processes. The more toxic transformation products of TC, 4-epitetracycline (ETC), anhydrotetracycline (ATC) and 4-epianhydrotetracycline (EATC) are also widely detected. This study investigated the antibacterial and bactericidal activity of TC, ETC, ATC, EATC against Shewanella sp, using Escherichia coli and Pseudomonas aeruginosa strains as quality controls. Further, batch assays were conducted to investigate the inhibition of these antibiotics on the phosphorus removal of the Shewanella strain, and removal mechanisms of TC and its transformation products (TCs). The inhibition on phosphorus removal by the Shewanella strain at 20 mg L-1 was in the order of ATC > EATC > TC > ETC. COD removal, poly-P accumulation and glycogen synthesis by the Shewanella strain were also inhibited. Biodegradation was the main removal mechanism of TC and ETC, while adsorption was the main one of ATC and EATC. This study helps to further understand the structure-activity relationship of TC.


Assuntos
Antibacterianos/toxicidade , Fósforo/metabolismo , Shewanella/efeitos dos fármacos , Tetraciclina/toxicidade , Adsorção , Compostos Heterocíclicos , Shewanella/metabolismo , Tetraciclina/análise , Tetraciclinas/análise , Águas Residuárias
10.
Environ Geochem Health ; 42(8): 2547-2556, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31858357

RESUMO

Uranium is a contaminant of major concern across the US Department of Energy complex that served a leading role in nuclear weapon fabrication for half a century. In an effort to decrease the concentration of soluble uranium, tripolyphosphate injections were identified as a feasible remediation strategy for sequestering uranium in situ in contaminated groundwater at the Hanford Site. The introduction of sodium tripolyphosphate into uranium-bearing porous media results in the formation of uranyl phosphate minerals (autunite) of general formula {X1-2[(UO2)(PO4)]2-1·nH2O}, where X is a monovalent or divalent cation. The stability of the uranyl phosphate minerals is a critical factor that determines the long-term effectiveness of this remediation strategy that can be affected by biogeochemical factors such as the presence of bicarbonates and bacterial activity. The objective of this research was to investigate the effect of bicarbonate ions present in the aqueous phase on Ca-autunite dissolution under anaerobic conditions, as well as the role of metal-reducing facultative bacterium Shewanella oneidensis MR1. The concentration of total uranium determined in the aqueous phase was in direct correlation to the concentration of bicarbonate present in the solution, and the release of Ca, U and P into the aqueous phase was non-stoichiometric. Experiments revealed the absence of an extensive biofilm on autunite surface, while thermodynamic modeling predicted the presence of secondary minerals, which were identified through microscopy. In conclusion, the dissolution of autunite under the conditions studied is susceptible to bicarbonate concentration, as well as microbial presence.


Assuntos
Bicarbonatos/química , Shewanella/metabolismo , Urânio/química , Anaerobiose , Água Subterrânea , Minerais/química , Minerais/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Polifosfatos , Solubilidade , Termodinâmica , Urânio/metabolismo , Compostos de Urânio/química , Compostos de Urânio/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
11.
BMC Microbiol ; 19(1): 173, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362704

RESUMO

BACKGROUND: Most species of Shewanella harbor two ferrochelatase paralogues for the biosynthesis of c-type cytochromes, which are crucial for their respiratory versatility. In our previous study of the Shewanella loihica PV-4 strain, we found that the disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), but it is different in Shewanella oneidensis MR-1. Hence, the function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, are investigated in S. oneidensis MR-1. RESULT: In the present study, deletion of either hemH1 or hemH2 in S. oneidensis MR-1 did not lead to overproduction of extracellular protoporphyrin IX (PPIX) as previously described in the hemH1 mutants of S. loihica PV-4. Moreover, supplement of exogenous hemins made it possible to generate the hemH1 and hemH2 double mutant in MR-1, but not in PV-4. Under aerobic condition, exogenous hemins were required for the growth of MR-1ΔhemH1ΔhemH2, which also overproduced extracellular PPIX. These results suggest that heme is essential for aerobic growth of Shewanella species and MR-1 could also uptake hemin for biosynthesis of essential cytochrome(s) and respiration. Besides, the exogenous hemin mediated CymA cytochrome maturation and the cellular KatB catalase activity. Both hemH paralogues were transcribed in wild-type MR-1, and the hemH2 transcription was remarkably up-regulated in MR-1ΔhemH1 mutant to compensate for the loss of hemH1. The periplasmic glutathione peroxidase gene pgpD, located in the same operon with hemH2, and a large gene cluster coding for iron, heme (hemin) uptake systems are absent in the PV-4 genome. CONCLUSION: Our results indicate that the genetic divergence in gene content and gene expression between these Shewanella species, accounting for the phenotypic difference described here, might be due to their speciation and adaptation to the specific habitats (iron-rich deep-sea vent versus iron-poor freshwater) in which they evolved and the generated mutants could potentially be utilized for commercial production of PPIX.


Assuntos
Citocromos/metabolismo , Ferroquelatase/genética , Heme/metabolismo , Protoporfirinas/metabolismo , Shewanella , Proteínas de Bactérias/genética , Ecossistema , Água Doce/química , Água Doce/microbiologia , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genótipo , Glutationa Peroxidase/genética , Hemeproteínas/metabolismo , Ferro/metabolismo , Fenótipo , Água do Mar/química , Água do Mar/microbiologia , Shewanella/genética , Shewanella/metabolismo
12.
J Proteomics ; 205: 103419, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212084

RESUMO

Protein lysine acetylation is a major post-translational modification and plays a critical regulatory role in almost every aspect in both eukaryotes and prokaryotes, yet there have been no data on Shewanella baltica, which is one of the specific spoilage organism (SSO) of aquatic products. Here, we performed the first global acetylproteome analysis of S. baltica. 2929 lysine acetylation sites were identified in 1103 proteins, accounting for 26.1% of the total proteins which participate in a wide variety of biological processes, especially in the constituent of ribosome, the biosynthesis of aminoacyl-tRNA, the amino acids and fatty acid metabolism. Besides, 14 conserved acetylation motifs were detected in S. baltica. Notably, various directly or indirectly spoilage-related proteins were prevalently acetylated, including enzymes involved in the unsaturated fatty acids biosynthesis closely related to the cold adaptability, cold shock proteins, pivotal enzymes involved in the putrescine biosynthesis, and a LuxR-type protein in quorum sensing system. The acetylome analysis in Shewanella can supplement the database and provide new insight into uncovering the spoilage mechanisms of S. baltica. The provided dataset illuminates the potential role of reversible acetylation in S. baltica, and serves as an important resource for exploring the physiological role of lysine acetylation in prokaryotes. SIGNIFICANCE: The psychrotrophic nature and the ability of S. baltica to make good use of "habitat" nutrients explain its importance in spoilage of seafood stored at low temperatures. However, the underlying mechanism of spoilage potential from the perspective of protein post-translational modification was rarely studied. This work identifies the first comprehensive survey of a lysine acetylome in S. baltica and uncovers the involvement of lysine acetylation in the diverse biological processes, especially in the closely spoilage-related pathways. This study provides a resource for functional analysis of acetylated proteins and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in Shewanella spp.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina Acetiltransferases/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Shewanella/metabolismo , Acetilação , Animais , Organismos Aquáticos/microbiologia , Contaminação de Alimentos , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas/fisiologia , Proteoma/análise , Proteoma/metabolismo , Putrescina/metabolismo , Alimentos Marinhos/microbiologia , Shewanella/química , Shewanella/isolamento & purificação , Shewanella/patogenicidade
13.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175188

RESUMO

Shewanella oneidensis strain MR-1, a facultative anaerobe and model organism for dissimilatory metal reduction, uses a periplasmic flavocytochrome, FccA, both as a terminal fumarate reductase and as a periplasmic electron transfer hub for extracellular respiration of a variety of substrates. It is currently unclear how maturation of FccA and other periplasmic flavoproteins is achieved, specifically in the context of flavin cofactor loading, and the fitness cost of flavin secretion has not been quantified. We demonstrate that deletion of the inner membrane flavin adenine dinucleotide (FAD) exporter Bfe results in a 23% slower growth rate than that of the wild type during fumarate respiration and an 80 to 90% loss in fumarate reductase activity. Exogenous flavin supplementation does not restore FccA activity in a Δbfe mutant unless the gene encoding the periplasmic FAD hydrolase UshA is also deleted. We demonstrate that the small Bfe-independent pool of FccA is sufficient for anaerobic growth with fumarate. Strains lacking Bfe were unable to grow using urocanate as the sole electron acceptor, which relies on the periplasmic flavoprotein UrdA. We show that periplasmic flavoprotein maturation occurs in careful balance with periplasmic FAD hydrolysis, and that the current model for periplasmic flavin cofactor loading must account for a Bfe-independent mechanism for flavin transport. Finally, we determine that the metabolic burden of flavin secretion is not significant during growth with flavin-independent anaerobic electron acceptors. Our work helps frame the physiological motivations that drove evolution of flavin secretion by ShewanellaIMPORTANCEShewanella species are prevalent in marine and aquatic environments, throughout stratified water columns, in mineral-rich sediments, and in association with multicellular marine and aquatic organisms. The diversity of niches shewanellae can occupy are due largely to their respiratory versatility. Shewanella oneidensis is a model organism for dissimilatory metal reduction and can respire a diverse array of organic and inorganic compounds, including dissolved and solid metal oxides. The fumarate reductase FccA is a highly abundant multifunctional periplasmic protein that acts to bridge the periplasm and temporarily store electrons in a variety of respiratory nodes, including metal, nitrate, and dimethyl sulfoxide respiration. However, maturation of this central protein, particularly flavin cofactor acquisition, is poorly understood. Here, we quantify the fitness cost of flavin secretion and describe how free flavins are acquired by FccA and a homologous periplasmic flavoprotein, UrdA.


Assuntos
Flavinas/metabolismo , Fumaratos/metabolismo , Shewanella/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Periplasma , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
14.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813619

RESUMO

Shewanella sp. O23S is a dissimilatory arsenate reducing bacterial strain involved in arsenic transformations within the abandoned gold mine in Zloty Stok (SW Poland). Previous physiological studies revealed that O23S may not only release arsenic from minerals, but also facilitate its immobilization through co-precipitation with reduced sulfur species. Given these uncommon, complementary characteristics and the application potential of the strain in arsenic-removal technologies, its genome (~5.3 Mbp), consisting of a single chromosome, two large plasmids (pSheA and pSheB) and three small plasmid-like phages (pSheC-E) was sequenced and annotated. Genes encoding putative proteins involved in heavy metal transformations, antibiotic resistance and other phenotypic traits were identified. An in-depth comparative analysis of arsenic respiration (arr) and resistance (ars) genes and their genetic context was also performed, revealing that pSheB carries the only copy of the arr genes, and a complete ars operon. The plasmid pSheB is therefore a unique natural vector of these genes, providing the host cells arsenic respiration and resistance abilities. The functionality of the identified genes was determined based on the results of the previous and additional physiological studies, including: the assessment of heavy metal and antibiotic resistance under various conditions, adhesion-biofilm formation assay and BiologTM metabolic preferences test. This combined genetic and physiological approach shed a new light on the capabilities of O23S and their molecular basis, and helped to confirm the biosafety of the strain in relation to its application in bioremediation technologies.


Assuntos
Arseniatos/metabolismo , Genes Bacterianos , Genômica , Plasmídeos/genética , Shewanella/genética , Shewanella/metabolismo , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Oxirredução , Filogenia , Mapeamento Físico do Cromossomo , Shewanella/crescimento & desenvolvimento
15.
Chemosphere ; 168: 1158-1168, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27823777

RESUMO

Toxicity of nanomaterials to ecological systems has recently emerged as an important field of research, and thus, many researchers are exploring the mechanisms of how nanoparticles impact organisms. Herein, we probe the mechanisms of bacteria-nanoparticle interaction by investigating how TiO2 nanoparticles impact a model organism, the metal-reducing bacterium Shewanella oneidensis MR-1. In addition to examining the effect of TiO2 exposure, the effect of synergistic simulated solar irradiation containing UV was explored in this study, as TiO2 nanoparticles are known photocatalysts. The data reveal that TiO2 nanoparticles cause an inhibition of S. oneidensis growth at high dosage without compromising cell viability, yet co-exposure of nanoparticles and illumination does not increase the adverse effects on bacterial growth relative to TiO2 alone. Measurements of intracellular reactive oxygen species and riboflavin secretion, on the same nanoparticle-exposed bacteria, reveal that TiO2 nanoparticles have no effect on these cell functions, but application of UV-containing illumination with TiO2 nanoparticles has an impact on the level of riboflavin outside bacterial cells. Finally, gene expression studies were employed to explore how cells respond to TiO2 nanoparticles and illumination, and these results were correlated with cell growth and cell function assessment. Together these data suggest a minimal impact of TiO2 NPs and simulated solar irradiation containing UV on S. oneidensis MR-1, and the minimal impact could be accounted for by the nutrient-rich medium used in this work. These measurements demonstrate a comprehensive scheme combining various analytical tools to enable a mechanistic understanding of nanoparticle-cell interactions and to evaluate the potential adverse effects of nanoparticles beyond viability/growth considerations.


Assuntos
Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Riboflavina/metabolismo , Shewanella/efeitos dos fármacos , Shewanella/crescimento & desenvolvimento , Titânio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Luz , Estresse Oxidativo/efeitos dos fármacos , Shewanella/metabolismo , Energia Solar , Raios Ultravioleta
16.
Enzyme Microb Technol ; 95: 230-235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866620

RESUMO

Photothermal therapy (PTT) is a minimally invasive and effective cancer treatment method and has a great potential for innovating the conventional chemotherapy approaches. Copper sulfide (CuS) exhibits photostability, low cost, and high absorption in near infrared region, and is recognized as an ideal candidate for PTT. However, CuS, as a photothermal agent, is usually synthesized with traditional chemical approaches, which require high temperature, additional stabilization and hydrophilic modification. Herein, we report, for the first time, the preparation of CuS nanoparticles as a photothermal agent by a dissimilatory metal reducing bacterium Shewanella. oneidensis MR-1. The prepared nanoparticles are homogenously shaped, hydrophilic, small-sized (∼5nm) and highly stable. Furthermore, the biosynthesized CuS nanoparticles display a high photothermal conversion efficiency of 27.2% because of their strong absorption at 1100nm. The CuS nanoparticles could be effectively used as a PTT agent under the irradiation of 1064nm. This work provides a simple, eco-friendly and cost-effective approach for fabricating PTT agents.


Assuntos
Cobre/química , Cobre/metabolismo , Nanopartículas Metálicas/química , Shewanella/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Linhagem Celular Tumoral , Cobre/farmacologia , Química Verde , Humanos , Hipertermia Induzida , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Processos Fotoquímicos , Sulfetos/farmacologia
17.
Bioresour Technol ; 222: 114-122, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27716563

RESUMO

With increasing production and consumption, more antibiotics are discharged into wastewater treatment plants and generally cannot be sufficiently removed. Because of the complexities of biological treatment processes, the fates of antibiotics and their effects on microorganisms, particularly those involved in the phosphorus removal system, are still unclear. Here, a Shewanella strain was isolated from an enhanced biological phosphorus removal (EBPR) system and was found to have the ability to remove phosphorus (P) and chemical oxygen demand (CODcr). Antibiotics affected the Shewanella strain through metabolism of the three main intracellular polymers, altering the ability of the strain to remove P and CODcr. These effects varied with the structure and concentration of the antibiotics. The Shewanella strain removed cefalexin and amoxicillin by degradation or adsorption, producing 2-hydroxy-3-phenyl pyrazine from cefalexin. This study enabled the recognition of the effect and removal of antibiotics during wastewater treatment.


Assuntos
Antibacterianos/farmacocinética , Fósforo/metabolismo , Esgotos/microbiologia , Shewanella/metabolismo , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Cefalexina/farmacocinética , Fósforo/isolamento & purificação , Esgotos/química , Shewanella/efeitos dos fármacos , Shewanella/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/farmacocinética
18.
J Environ Manage ; 183(Pt 3): 687-693, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639303

RESUMO

The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with synthetic wastewater containing a specific LAS load rate (SLLR) of 1.5 mg gVS-1 d-1 (∼16.4 mgLAS L-1 influent) and supplied with 7276 µMol L-1 of Fe(III). The biomasses from the inoculum and at the end of the EGSB-Fe operation (127 days) were characterized using 16S rRNA Ion Tag sequencing. An increase of 20% in the removal efficiency was observed compared to reactors without Fe(III) supplementation that was reported in the literature, and the LAS removal was approximately 84%. The Fe(III) reduction was dissimilatory (the total iron concentration in the influent and effluent were similar) and reached approximately 64%. The higher Fe(III) reduction and LAS removal were corroborated by the enrichment of genera, such as Shewanella (only EGSB-Fe - 0.5%) and Geobacter (1% - inoculum; 18% - EGSB-Fe). Furthermore, the enrichment of genera that degrade LAS and/or aromatic compounds (3.8% - inoculum; 29.6% - EGSB-Fe of relative abundance) was observed for a total of 20 different genera.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Reatores Biológicos/microbiologia , Consórcios Microbianos , Tensoativos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/metabolismo , Anaerobiose , Biomassa , Geobacter/genética , Geobacter/metabolismo , Ferro/química , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Esgotos , Shewanella/genética , Shewanella/metabolismo , Tensoativos/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
19.
Dalton Trans ; 45(12): 5030-7, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26632613

RESUMO

Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 µM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments.


Assuntos
Riboflavina/química , Shewanella/metabolismo , Biodegradação Ambiental , Compostos Férricos/química , Netúnio/química , Oxirredução , Radioisótopos/química , Tecnécio/química , Urânio/química , Espectroscopia por Absorção de Raios X
20.
Wei Sheng Wu Xue Bao ; 55(8): 1074-8, 2015 Aug 04.
Artigo em Chinês | MEDLINE | ID: mdl-26665606

RESUMO

OBJECTIVE: We used Shewallena oneidensis MR-1 to produce selemium (Se) nanobars and studied the influence of Se(IV) concentrations and incubation time on nanobars production. METHODS: We incubated Shewallena oneidensis MR-1 under anaerobic condition with Luria-Bertani (LB) liquid medium containing 0.1, 1.0, 10.0 or 100.0 mmol/L Se (IV) in Na2SeO3, to determine the optimal Se (IV) concentration for bacterial growth. Then, we incubated Shewallena oneidensis MR-1 with the optimal Se (IV) concentration and collected deposits 24 and 72 h after anearobic incubation. We used scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction to analyse the deposits. RESULTS: The cross sectional diameter and length of deposits that were produced by Shewallena oneidensis MR-1 after 24 h incubation with 1 mmol/L Se(IV) was around 80 nm and 2-3 µm, respectively. However, the deposits after 72 h incubation exceeded the size limit of nano material. Furthermore, the energy-dispersive X-ray and the X-ray diffraction spectroscopy confirmed that the deposits were elemental Se. CONCLUSION: This study provides a viable method for the biosynthesis of Se nanoban Shewallena oneidensis MR-1 can produce a large number of Se nanobars at exponential phase under 0.1 mmol/L Se (IV).


Assuntos
Nanotubos/química , Selênio/metabolismo , Shewanella/metabolismo , Microscopia Eletrônica de Varredura , Nanotubos/ultraestrutura , Selênio/química , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Shewanella/ultraestrutura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA